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A Quantum Field Theory Perspective on the 
Unification Gauge and the Inertial Field 

Gravitational Interaction from the Inertial Field vs. General Relativity 

Martin Gibson’s paper proposes that gravity is not a fundamental force carried by a hypothetical graviton 
but instead emerges as an inherent property of an “inertial field” – a continuous, isotropic field of 
energy defined throughout spacetime.1   In this model, concentrations of inertial field energy above a 
certain threshold give rise to the observed quantum properties of particles – including rest mass and the 
associated gravitational attraction.1   In other words, a localized “lump” of the inertial field can manifest as 
a particle with mass, spin, and charge, and at the same time produce a gravitational interaction by its 
influence on the surrounding field. Notably, Gibson distinguishes between mediated forces (like 
electromagnetism, carried by photons) and an unmediated interaction between matter and spacetime 
(gravity).2   Gravity here is an interaction through the continuum of spacetime itself, rather than via exchange 
of a force particle – aligning with the classical view of gravity but cast in a new light. 

In contrast, Einstein’s general relativity (GR) describes gravity as curvature of spacetime caused by mass- 
energy. Mathematically, GR can be seen as a gauge theory of the local Lorentz symmetry: Einstein’s field 
equations govern the curvature (field strength) of a principal connection (the Levi-Civita connection on the 
frame bundle) over spacetime.3   This means that standard GR can be formulated as a principal fiber 
bundle with spacetime as the base manifold and the Lorentz group as the fiber, where the gravitational field 
is a connection (analogous to a gauge field) and its curvature corresponds to the Riemann curvature 
tensor.3   Gibson’s inertial field model parallels this geometric viewpoint to an extent – it retains the idea 
that gravity is intrinsic to spacetime (the “inertial field”) but extends it by incorporating quantum concepts 
of particle generation and field quantization. The gravitational interaction emerges naturally when 
two masses are present in the inertial field: Gibson reformulates Newton’s law of gravitation in 
“quantum” terms, expressing the force FG between two bodies as depending on their numbers of 
fundamental mass quanta and a gravitational gauge constant, G.4,5  In his formulation, each body’s mass 

Ma is written as Ma = nMa m0 (with nMa quanta of a fundamental mass m0 and the distance between them is 

similarly expressed in terms of fundamental length quanta.6   By substituting these into Newton’s force law, 
Gibson shows that gravity can be viewed as the interaction of these mass quanta via the inertial 
field, rather than an independent interaction requiring a new force carrier. Essentially, the inertial field 
“funnels” or gauges the gravitational force. 

Importantly, Gibson’s approach does not discard relativity – it “does not preclude an interpretation of 
general or special relativity with respect to local inertial frames”.7     Instead, it extends the relativistic 
picture by suggesting that what we call a gravitational field is in fact a manifestation of variations in the 
underlying inertial field density. In a quantum field theory (QFT) context, one might think of the inertial field 
as a kind of background field whose excitations are particles, and whose gradients or strains correspond to 
gravitational effects. Unlike canonical quantum gravity approaches (which attempt to quantize the metric or 
postulate a spin-2 graviton field), this model posits gravity as already unified with quantum properties at the 
field level. It bypasses the need for a separate graviton-mediated force by treating gravity as an emergent 
gauge effect of the inertial field continuum. This is a conceptual departure from the Standard Model of 
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particle physics, where gravity is omitted and only the other three forces are included in the gauge 
framework.8 Gibson’s unification gauge attempts to include gravity alongside electromagnetism, strong, 
and weak forces by rooting them in one field. It’s worth noting that modern gauge theories often involve 
extending global symmetries to local ones (as in Yang–Mills theory) – an approach that historically mirrors 
the development of GR.9   Here, the symmetry in question is the invariance under changes of an “inertial” 
reference, suggesting a new kind of local symmetry: all observers should agree on the inertial constant and 
field structure, even as they may see different slices of spacetime. In summary, gravity in this model is a 
facet of the inertial field’s geometry and dynamics, contrasting with GR’s pure spacetime curvature view 
and offering an alternative to quantum gravity that operates via an inherent field gauge rather than a 
separate graviton force. 

 

The Inertial Constant t = ℏ/c: A Mass–Length Gauge Link 

At the heart of Gibson’s unification proposal is a “time-independent inertial constant”, denoted by the 
Hebrew letter tav (t), defined as: 

t =ℏ 𝑐$ = 𝑚!𝑟!    

where m0 and r0 are fundamental units of mass and length, respectively.10,11   This constant t = ℏ/c has 
dimensions of mass·length (in SI units, kg·m) and is the same for all elementary particles of nonzero rest mass. In 
fact, it encapsulates the well-known relationship between a particle’s rest mass and its reduced Compton 
wavelength: m ⋅ λC  = ℏ/c is invariant. Gibson elevates this observation to a guiding principle: mass and length are 
inextricably linked by a universal constant that does not explicitly involve time. By removing time from the 
combination ℏ/c, one obtains a “quantum invariant” that characterizes the inertia of matter.12    In a wave 
interpretation, t corresponds to an angular wavelength (essentially length scale) associated with a quantum of 
mass.13  For example, a proton, neutron, and electron – despite their hugely different masses – each satisfy m × 
(reduced Compton wavelength) = ℏ/c . Gibson writes this as:  

t = m0r0 = mnrn = mprp = mere = ⋯, 
where mn, mp, me are the masses of neutron, proton, electron, and rn, rp, re the corresponding 
characteristic lengths (comparable to their reduced Compton wavelengths)14. The equality of all these 
products to the same t highlights a universal link between mass and length. 

Physically, what does this inertial constant signify? Gibson argues it is a fundamental gauge quantity of 
the inertial field itself, not a property of individual particles15. In other words, t = ℏ/c is seen as a built-in 
scale of nature – a bit like a “gauge coupling” that nature uses to relate the size of a quantum object to its 
mass. Because t is the same for electrons, protons, etc., it suggests that all these particles are different 
excitations or structures of one underlying field (the inertial field) that shares a common fabric. Being 
independent of time, t represents a sort of timeless anchor between the quantum and geometric realms. 
This time-independence implies that whether a particle is at rest or moving, or whether we 
consider different reference frames, the product m × length remains fixed – pointing to an invariant 
gauge of inertia. In relativistic QFT, invariants like this often signal a symmetry or conserved quantity. 
Here one might say it reflects an invariance under scaling of time versus space: by dividing Planck’s 
constant (action quantum) by the speed of light, we’ve essentially factored out time (since action has time 
in it) and are left with a pure spatial-mass relationship. 
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From a quantum field perspective, ℏ and c are fundamental constants that already permeate our theories: c 
links space and time units (and sets the scale for relativistic effects), while ℏ links energy and frequency (and 

sets the scale for quantum effects). The combination ℏ/c yields a fundamental length·mass scale. Notably, if 

one also brings Newton’s constant G into the mix, one gets the Planck length or Planck mass, but Gibson’s 
constant t omits G, focusing purely on the quantum relation without gravity’s constant. This suggests that 
t is intended as a kind of pre-gravitational gauge: a built-in property of the inertial field that later will help 
give rise to gravity (through the field’s behavior) but is not itself defined using gravitational coupling. By 
treating t as the “gauge setting” for the inertial field, Gibson effectively selects a scale at which to 
analyze unification that is much larger than the Planck length (since ℏ/c ≈ 3.5 × 10−43 in SI units, which in 
geometric units corresponds to about 10-7 kg-m). [“10-7 kg-m” may be taken from Planck scale calculations on 
the web for the Planck mass, at 2.18 x 10-8 kg, here dimensionally misquoted as kilogram-meters, the same 
dimensions as the inertial constant.] 

This is a different approach from conventional unification attempts that often invoke the Planck scale 
(~10−35 m) as the fundamental scale where gravity and quantum forces meet16. Gibson explicitly notes 
that the current state of the art – setting the unification scale at the Planck area (~2.6 × 10−70 m²) – “does 
not provide a model of a single gauging of the various forces”16. By contrast, using the inertial constant t 
(and associated fundamental mass m0 and length r0 ) as the gauge, he aims to find a single framework for 
all interactions at a perhaps more accessible scale17,18. The significance of t is thus twofold: (1) it reveals a 
deep unity between mass and wavelength (space) for quantum objects, reinforcing a wave-particle duality 
in geometric terms; and (2) it serves as a foundational parameter for the unified gauge theory on the 
inertial field, analogous to how electric charge e is the coupling constant in electrodynamics or how g’s are 
coupling constants in non-Abelian gauge theories. Here, however, t is not just a coupling in a Lagrangian – 
it’s literally the same for all relevant fields, hinting at a common origin. Indeed, Gibson remarks that while 
one could say the same of Planck’s constant ℏ (it’s universal, too), the crucial difference is that t = ℏ/c 
is independent of any time reference and “appears to be a function of the inertial field itself and not 
of any separable particles”15. This perspective aligns with a field-based ontology: t belongs to the field, 
and particles inherit it when they form from the field. 

In quantum field theory language, one might interpret t as setting a natural gauge for field quanta. For 
example, a quantum of the field (say an electron excitation of the inertial field) will have an intrinsic length 
scale re such that mere = ℏ/c. If we were to define a dimensionless coupling or a normalized gauge unit, we 
could set m0 r0 = 1 in some units (which Gibson does in analyzing his model’s geometry19). In summary, the 
inertial constant plays the role of a universal conversion factor between mass and length in this unified 
framework, much like ℏ links energy and time or like a gauge coupling links charge and field strength. It 
anchors the inertial field’s quantum geometry, ensuring that any particle generated from the field will 
satisfy this mass–length relation. This also strongly suggests a wave interpretation of particle 
properties – indeed Gibson notes that this view “suggests a wave interpretation of quantum properties”7 . 
Instead of treating particles as point-like discrete entities, they are treated as wave structures in the 
inertial field characterized by a wavelength (lq) such that mq lq /2p = ℏ/c12,11. That is essentially a de Broglie-
Compton condition, now elevated to a guiding gauge principle. 
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Inertial Field as Base Manifold and a Unified Gauge Connection 

In modern gauge theory, a fiber bundle formulation is used to describe interactions: the base manifold is 
typically spacetime, and at every point of spacetime is attached a fiber representing internal degrees of 
freedom or reference frames (e.g. an internal symmetry group for forces or a local frame for gravity)20, 21. 
A gauge connection (an Ehresmann connection one-form on the bundle) then specifies how fields “rotate” 
or change as one moves from point to point – it allows one to take a covariant derivative that keeps 
track of changes both from actual variation and from changing local reference frame22. Gibson’s work can 
be understood in this language by identifying the inertial field as the base manifold and constructing a 
unified gauge connection that lives on a fiber capturing the symmetries of that inertial field. In simpler 
terms, the inertial field is playing the role of spacetime itself but enriched with additional structure (its 
“density” or impedance, which can vary). We still have ordinary spacetime coordinates, but Gibson’s inertial 
field assigns to each spacetime point an “inertial density” value and possibly orientation. We can imagine 
a principal fiber bundle where the fiber represents the gauge freedom of choosing an inertial frame 
orientation or phase at that point, and the base is the continuous inertial field (which, conceptually, is just 
spacetime endowed with a particular field). 

What would the gauge group be in this unified picture? The paper does not state an explicit Lie group in 
conventional terms; however, hints come from the way Gibson constructs his model. He speaks of being “ready to 

set the gauge, GAt f, in the inertial field”23. The notation GAtf suggests that the gauge might involve 
transformations mixing or relating three quantities: area (A), stress (denoted f ), and force (denoted by the 
Greek t ). Indeed, these correspond to the three axes in Gibson’s geometric depictions of the inertial field 
(more on that in the next section). It’s plausible that the gauge symmetry involves rotational freedom in 
this three-dimensional space of field variables – essentially an SO(3)-like symmetry that rotates the 
components (A, τ , f ) . This would be analogous to how internal isospin symmetry in Yang–Mills rotates 
components of e.g. a pion field in an abstract isospin space.  In Gibson’s case, rotating the “stress–
force–area” basis might represent shifting between different manifestations of energy in the inertial field. 
For example, one orientation might emphasize “stress” (potential energy stored in field compression) 
whereas a rotated orientation emphasizes “wave force” (kinetic or propagating energy). The base manifold 
for this gauge bundle is just the spacetime continuum filled by the inertial field. We attach to each 
spacetime point a fiber that could represent, say, an orthonormal triad of (A, τ , f ) directions – analogous 
to attaching a local frame in GR or an internal basis in gauge theory20, 21. A choice of a particular basis (a  
section of this bundle) at each point corresponds to a particular “gauge” of how we measure area, stress, 
and force locally. Changing the gauge would mean rotating these basis vectors at each point (like choosing 
a different local inertial frame or phase convention). Because the inertial field is considered fundamental, 
Gibson argues one should focus on its inherent properties “apart from any quantum state” when setting the 
gauge17 – in other words, choose a gauge that is natural to the field itself. 

He contrasts this with the conventional approach of choosing the Planck scale as a fundamental gauge – 
which corresponds to using an extremely small length/area unit as the baseline for all forces16. Instead, 
Gibson’s gauge setting relies on t = ℏ/c (along with the associated m0, r0 as discussed, which is intrinsic 
to the field and common to all particles18. By doing so, he moves the perspective from the particles 
(discrete quanta) to the field (continuous medium). In gauge theory terms, this is like saying we choose a 
field-based gauge condition rather than a particle-based one. The unified gauge connection on this bundle 
would then tell us how the inertial field’s properties change as we move through space and time. For 
example, if we move from one point in space to another, the inertial field density might change (due to a 
mass present or a wave passing by); the gauge connection would include terms that account for this 
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gradient, much as the Christoffel symbols (connection coefficients) in GR account for how coordinates 
change in curved spacetime, or how the electromagnetic potential Aµ tells us how the phase of a 
charged field changes from point to point. 

Mathematically, one could envision defining a covariant derivative D that acts on field quantities like the 
stress or force in such a way that inertial gauge transformations are compensated. The gauge field in this 
case – the connection – would likely have components related to how stress gradients produce forces, etc. 
(Indeed, in a simpler classical analogy, the strain in a material (spatial derivative of displacement) produces 
stress; here the spatial derivative of inertial field density might produce a force field – a gravitational pull or 
a quantum potential.) Gibson even writes an expression suggestive of a gauge field strength or energy– 
momentum density for the unified gauge: he derives an “energy density–stress of the unification gauge 
defined on the inertial field”24. In that expression, a coefficient of invariants multiplies a gauge metric in 
parentheses, and r0 (fundamental length) appears quantized, providing a “displacement value for the force 
as work”25. While the notation is somewhat bespoke in the paper, one can recognize the pattern of field 
invariants and a metric, analogous to how a Yang–Mills Lagrangian contains invariant terms like 
Fµn Fµn, or how the Einstein–Hilbert action uses the metric gµn and invariants like the Ricci scalar. The 
mention of a “gauge metric” hints that Gibson is formulating a metric on the inertial field manifold – likely 
describing distances or intervals in terms of (A, τ , f ) components (since he treats those in a geometric 
way). The inertial gauge connection would ensure that when we change the local basis (for instance, 
swap some stress for force via a local rotation in the fiber), the covariant derivative compensates so 
that physical predictions (like energy density) remain consistent22. In practical terms, this could mean 
that a free particle moving in the inertial field follows a path such that the covariant derivative of its 
momentum is zero (like a geodesic condition, but now including inertial field effects) – analogous to how 
in GR a freely falling particle has Duµ /dt = 0 (no four-acceleration when using the covariant derivative that 
includes the Christoffel connection).  Similarly, a charged particle in a gauge field has Dµy = ∂µ+ ieAµy; 

here one might have terms involving the inertial field’s connection so that as the particle moves through 
regions of varying inertial density, its wavefunction’s phase or its momentum is adjusted by the gauge 
potential of the inertial field. 

It’s illuminating to compare this to known frameworks: in Kaluza–Klein theory (an old unification attempt of 
gravity and electromagnetism), one adds an extra dimension such that the metric of 5-dimensional 
spacetime incorporates the electromagnetic potential Aµ. In that theory, electromagnetism emerges as 
part of the geometrical connection. Gibson’s approach is conceptually analogous but in a 4D context – he is 
effectively embedding gravitational and other interactions into a single geometric structure (the inertial field) 
on spacetime, rather than using extra dimensions. The “unification gauge” is then a single gauge structure 
that should reduce, in appropriate limits, to the familiar forces. We already see that in one limit, if we only 
allow variations in the inertial field that correspond to mass distributions, we’d get something like 
Newtonian gravity (which he indeed recovers in a quantum form). In another limit, variations corresponding 
to oscillatory fields might yield electromagnetic-like effects (since photon-mediated interactions are also 
supposed to be accounted for by the inertial field gauge2). It is as if the fiber of the bundle contains what we 
usually think of as separate interactions, now blended. Achieving this mathematically would likely 
require a larger symmetry group that contains the various gauge groups of the Standard Model along with 
transformations related to gravity (perhaps something containing SU(3) x SU(2) x U(1) and local Lorentz, 
etc.). While the paper doesn’t spell out the group, it’s clear that the inertial field gauge is meant to be 
a unified framework for what we normally describe with different fields. The use of a single invariant t 
across all particles hints that this gauge could impose a new unified constraint linking what would otherwise 
be distinct charges or quantum numbers. 
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In summary, by treating the inertial field as the base manifold and formulating a unified gauge connection 
on top of it, Gibson’s approach fits naturally into the language of modern geometric QFT. Every point in 
spacetime (inertial field) has attached to it the gauge degrees of freedom (perhaps the orientation of stress/ 
force distribution, or phases relating to different interactions), and the unification connection dictates how 
those change from point to point. Formulating physics in this way ensures that if one performs a local 
gauge transformation (for example, reinterpreting some local inertial effect as a different mixture of stress 
and force), the physics doesn’t change – much like how electric and magnetic fields can mix under Lorentz 
transformations, or how one can shift a quantum wavefunction’s phase locally if accompanied by the 
electromagnetic gauge field’s change. Gibson’s model thus invites us to see all fundamental forces as 
aspects of one master field and its geometry, rather than separate interactions on a fixed spacetime 
background. This is very much in line with the gauge-theoretic thinking that underpins both the Standard 
Model and general relativity, but it attempts to push it one step further to a true unification in one bundle. 
The challenge (beyond the paper’s scope) would be to explicitly identify the unified gauge group and derive 
the conventional field equations from this single connection. Gibson’s results suggest that at least for 
gravity and electromagnetism, the signs are promising, since Newton’s law and electromagnetic 
interactions (photon exchange) can be described with the inertial field present2, 4. 

 

Geometric Structures: Stress, Force, Area – and Their Fiber Bundle 
Interpretation 

A striking aspect of the paper is the use of geometric constructs (charts and diagrams) to visualize how a 
quantum (particle) emerges from the inertial field. Gibson borrows concepts from continuum mechanics 
(stress, strain, density) and oscillatory systems (inductive vs. capacitive energy storage) to describe the 
formation of a particle as a kind of stable geometric/energetic configuration in the inertial field. The key 
elements of these constructs are stress ( f ), force (t ), and area (A), which serve as three orthogonal axes 
in an abstract space. One can think of these as three variables describing the state of a region of the 
inertial field; f might represent energy density or pressure (a “stress” in the field), t is a force or momentum 
flux, and A could be related to area or cross-section over which the force or stress is considered (perhaps a 
measure of extent). 

In the paper, Gibson analyzes how these quantities relate by plotting surfaces and curves in the 3D space 
(A, τ , f ) .   For instance, he considers a plane of equal stress and force (so f-τ relation) and a hyperbolic 
plane of stress–area relationship26,27. By rotating these planes and looking at their intersection with a sphere 
(the inertial sphere), he identifies special points – notably points of inflection – where the nature of the 
energy exchange changes27,19. Specifically, he finds an inflection point at coordinates (−1,−1,1) in his 
normalized units (or also one at (1,1,1) in another orientation)28,29. At these points, something important 
happens; it is the “point of maximum conversion of energy density (potential) to kinetic wave force”, 
which he calls an inductive moment L, with a scalar value normalized such that t0 = 128,19. [Th is—the 
induct ive moment L—is the Act ion,  which s ince i t  is  invar iant ,  is  t ime f ree and can be 
expressed by the iner t ia l  constant  ra ther  than h-bar.  The symmetr ic  counter-po in t  to  L  is  o f  
course s ta ted in  the fo l low ing as the capaci t ive  moment C,  unsta ted as the Power o f  the 
form, which can a lso be va lued by the iner t ia l  constant .  S ince L  =  C is  invar iant  under a l l  
condi t ions,  i t  essent ia l ly  s ta tes that  the f iber  bundle  has an invar iant  Lagrangian and 
Hamil ton ian as sca lar  and vector  potent ia ls . ]   In simpler terms, this is where the inertial field’s 
stored energy (stress) is maximally being released as wave or motion (force), akin to how in an oscillating 
LC circuit the energy swaps between electric (capacitive) and magnetic (inductive) forms at quarter-
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cycle points. He also identifies a complementary capacitive moment C (the other inflection, 
presumably at the opposite side of the sphere, e.g. (1,1,1) vs (-1,-1,-1))3 0 . These two antipodal points on 
the inertial sphere represent the two halves of the energy cycle. Gibson even describes viewing them on the 
sphere “as if on the face of a clock” at an instant and over a full cycle31,32 – reinforcing the idea that a 
particle corresponds to an oscillatory field configuration in time, with energy sloshing between forms but 
contained in a stable “orbital” fashion. 

How do we map these ideas to the formalism of fiber bundles and gauge fields? First, note that Gibson’s 
inertial sphere of radius √ 3 (in his units) is essentially a gauge surface in the space of field 
variables33,34. The equation 

x2 + y2 + z2 = R2 

with R = √ 3  (where x, y, z correspond to suitably normalized A, t, f coordinates) defines this 

sphere35,33. On this sphere, the combination of stress, force, and area is such that each contributes equally 
(since 12 + 12 + 12  = 3 appears in the derivation)36,37. This sphere “serves as a gauging mechanism in the 
derivation of quantum effects, including spin and gravity”34. We can interpret this sphere as a manifold of 
gauge-equivalent states or a constant-energy surface in the inertial field’s state space. In gauge theory 
terms, one might say that the inertial field finds a stable configuration when the system’s parameters lie on 
this sphere. Small perturbations might rotate the state around on the sphere (trading some stress for 
force, etc.) but remain on the sphere if energy is conserved. This is analogous to how, for instance, the 
Bloch sphere in quantum mechanics represents all possible states of a two-level system – rotations on that 
sphere correspond to unitary (gauge) transformations that change the state. Here rotations on the 
inertial sphere (mixing A, τ , f ) could correspond to gauge transformations in the inertial field’s 
internal space, redistributing energy between potential (stress) and kinetic (wave force) forms without 
changing the total invariant (which might be related to t0 or to total energy). 

Indeed, Gibson’s analysis emphasizes energy conservation: the energy density concentrated in the 
quantum form (inside the sphere) is balanced by a “rarefaction strain” of the field outside the form38. This 
implies that the particle (the localized high-density region at the inflection) and its surrounding field are in 
equilibrium – energy is not lost but stored partly as field stress outside, analogous to how a stretched 
membrane stores potential energy around a mass. In fiber bundle language, we can consider the stress, 
force, area axes as basis vectors in an internal vector space attached to each point of the inertial field. 
A particular “state” of the field at a point (or in a localized region) can be represented as a point in this 
internal space. The inertial sphere then is like a constraint surface or an orbit of the internal symmetry. 
The inflection points L and C are particular directions in this internal space that have physical significance 
(maximum energy transfer, etc.). A gauge transformation would move these directions around, meaning we 
could change what combination of A, τ , f constitutes the inductive moment, for example, by reorienting the 
internal basis. However, the existence of the inductive and capacitive moments at opposite ends is gauge-
invariant – one can’t get rid of them by a simple internal rotation; they are properties of the field’s 
equations (like special solutions). In more standard gauge terms, one might say these are like distinct 
phases or vacuum states of the field (one storing energy, one releasing it), and the inertial sphere 
geometry shows how the field oscillates between them. 

The covariant derivative in this context would be used to describe how these stress/force variables change 
as we move in spacetime. For instance, if we take a small step in space (or time), how do A, τ , f at the new 
point relate to those at the old point? A naive derivative would simply compare them, but a covariant 
derivative uses the gauge connection to subtract any changes due to just rotating the local (A, 
τ , f ) axes. Gibson’s scenario of rotating the “aqua plane” by 90° CCW about an axis26, or adding a 
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hyperbolic plane rotated CW39, can be seen as specific gauge choices in how to visualize the relations. The 
fact that after these rotations he finds symmetry in the curves (the “simultaneous symmetry of the curve 
from Chart 17” is recovered)39 suggests that a proper understanding is invariant under such rotations – which 
is exactly what a gauge theory ensures. The stress–force contravariance he mentions26 implies that as 
stress decreases, force increases (and vice versa) in a related way – reminiscent of how electric and 
magnetic fields transform (one increases while the other rotates into it under a boost), or how a covariant 
vs contravariant tensor component change sign under metric inversion. This term “contravariance” might 
be hinting at a formal duality: force could be the “dual” of stress in the inertial field, much like electric field is 
dual to displacement field in materials, or E is dual to B under certain duality rotations in electromagnetism. 

To put it succinctly, Gibson’s inflection points and spherical gauge surfaces correspond to special 
configurations of the gauge field where the curvature or field strength has notable features. For example, 
at the inductive moment L, the inertial field’s curvature (in the sense of how rapidly stress changes to force) 
might be extremal. In a gauge theory, a point of extremal field strength or an inflection in potential often 
corresponds to a soliton-like solution or a critical point in field configuration space. It’s tempting to 
think of the particle solution (with its surrounding field) as an analog of a soliton or an instanton in a field 
theory – a localized, finite-energy solution. The spherical symmetry of the solution (Gibson’s inertial sphere 
is a sphere in parameter space, but the actual physical space solution is likely spherically symmetric around 
the particle) suggests the particle is like a spherical “gauge soliton” in the inertial field. In fiber bundle 
terms, the spherical surfaces in real space (e.g. a sphere around a mass) might correspond to integration 
surfaces for flux (Gauss’s law surfaces), whereas the spherical surface in the internal A, τ, f space 
corresponds to an equipotential state or a constant of motion. 

The stress–force–area constructs thus provide a bridge between geometry and field dynamics. Gibson 
overlays Newtonian mechanics concepts (stress and strain) onto quantum field concepts (particle as field 
excitation). By mapping these onto a fiber-bundle view, we recognize that he is effectively constructing a 
state space for the field at each point (the fiber) and exploring how the field’s Lagrangian or equations 
dictate certain geometric loci (spheres, inflection points) as solutions. The covariant treatment would 
involve ensuring that this picture holds true in any “gauge” of description. For instance, one might choose 
to describe the field in one coordinate system or another, or choose different normalizations for A, τ , f , but a 
proper gauge-invariant formulation would yield the same physical predictions (e.g. the existence of a stable 
particle solution with a given mass). The Ehresmann connection (gauge field) on the inertial bundle would 
mathematically encode the relationships between changes in A, τ , f across space and time and the 
presence of sources. In classical terms, this could reproduce equations analogous to stress–strain relations 
or field equations. For example, one might get an equation resembling a covariant version of Newton’s 
second law or a wave equation for the field. Gibson indeed derives something he calls the “energy/work 
equivalence at each slice” and an equation of a sphere implying a balance of contributions40,41. 

To connect to known physics: the stress tensor in g e n e r a l  relativity Tμν contains energy density 
( analogous to f )  and momentum flux (analogous to t ) components. Conservation of Tμν   (via covariant 

derivative ∇µ Tμν = 0) ensures energy-momentum is conserved given the connection (gravity)3. Gibson’s 

stress–force balance is essentially an energy-momentum conservation statement in the inertial field: the 
dense region’s energy (mass) plus the field’s outside energy remain balanced. If we were to write a 
covariant conservation law for the inertial field, it would look much like that of a stress tensor, with 
perhaps extra terms for the field’s self-interaction. The “inflection” where conversion is maximal could 
correspond to where the time derivative of potential energy equals the negative of the space derivative 
of kinetic energy, etc., akin to setting up a standing wave. In field theory, this might be the condition for a 
static solution (time derivatives zero at that moment) or a turning point in motion. 
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In summary, Gibson’s geometric constructs can be mapped to the formal gauge language by recognizing 
that stress, force, and area are field components that transform under local rotations (an internal 
symmetry), and the inertial sphere is an invariant surface under these transformations. The 
inflection points are special field configurations (likely related to solutions of the field equations) that 
remain invariant or critical under those transformations. A covariant derivative with the inertial gauge 
connection ensures that when analyzing how the stress/force distribution changes from point to point, we 
account for the fact that what is “pure stress” in one frame could appear as a mixture of stress and force in 
another (just as what is pure electric field in one inertial frame looks like a mix of electric and magnetic in 
another due to relativity). Gibson’s explicit rotation of charts is essentially performing such transformations. 
By incorporating those into a unified covariant framework, one would ensure that the physics is 
independent of the observer’s or modeler’s choice of orientation in the A, τ , f space, much as true 
gauge invariance demands. This makes the theory self-consistent and coordinate-independent – a 
necessary feature of any viable physical theory. 

 

Contextualizing with Yang–Mills, the Standard Model, and Modern 
Geometric QFT 

Gibson’s unification proposal exists against the backdrop of well-established gauge theories and ongoing 
quests for unity in physics. To appreciate his approach, it’s useful to compare and contrast it with Yang– 
Mills theory, the Standard Model gauge groups, and general relativity’s geometric formulation, as 
well as other unified frameworks: 

• Yang–Mills and Gauge Theory: Yang–Mills theory (first developed for non-Abelian SU(2) symmetry of 
isospin) generalizes the idea of gauge invariance beyond electrodynamics. In a Yang–Mills gauge 
theory, one demands that the Lagrangian is invariant under local transformations of some Lie group 
(e.g. SU(n)), which necessitates introducing gauge fields (connections) so that the derivative of fields is 
replaced by a covariant derivative42,43. The quanta of these gauge fields are the gauge bosons (like 
gluons, W/Z bosons, photons)44 . Gibson’s inertial field approach is very much in the spirit of Yang–
Mills: he is essentially proposing a new local symmetry (the inertial gauge symmetry) and introduces a 
gauge field (the unified connection on the inertial field) to preserve invariance. Where a Yang–Mills 
theory might have a gauge transformation that rotates an isospin vector at each point, here the 
gauge transformation might rotate the stress/force/area basis or alter the phase between what we 
consider “mass energy” and “field energy” at each point. The invariance under local changes of the 
inertial reference frame or field basis is akin to a Yang–Mills symmetry. In fact, one could say Gibson 
is combining a local Lorentz invariance (the basis of GR, dealing with inertial frames in spacetime) 
with local internal invariances (phase rotations, etc.) into one package. His repeated emphasis 
that t is independent of reference frame and tied to the field itself15 resonates with gauge principle: 
the physics (here encapsulated by t) should not depend on our arbitrary choice of time scaling or 
frame, hence formulating it as a gauge-invariant constant is natural. 

• Standard Model Gauge Groups: The Standard Model (SM) of particle physics is a gauge theory built on 
the direct product group GSM = SU(3)C x SU(2)L x U(1)Y (color, weak isospin, and hypercharge)44,8. It 
successfully unifies electromagnetic, weak, and strong interactions in the sense that all three are 
described by gauge fields and symmetry groups within one theoretical framework45. However, gravity is not 
included in G and the symmetry of gravity (which can be thought of as local Poincaré or SO(3,1) 
symmetry of spacetime). Some theoretical physicists have considered larger unified groups or 
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frameworks – for instance, and remains the odd one out – a separate interaction described by GR. 
Gibson’s unified inertial field gauge can be seen as an attempt to extend a similar kind of gauge 
unification to include gravity. In doing so, one might imagine a larger group or structure that 
encompasses both GSM grand unified theories (GUTs) that combine the SM groups into a single group 
like SU(5) or SO(10), and even attempts to include gravity (like string theory, which extends to an even 
larger symmetry and extra dimensions)8. Gibson’s approach is radically different from string theory or 
typical GUTs: instead of adding new high- energy symmetries or extra dimensions, it posits a new 
perspective on the known symmetries at a more classical field level. By focusing on the inertial field, he 
effectively incorporates the diffeomorphism invariance of GR (general coordinate invariance) into a 
quantum gauge setting, since inertial frames in GR are related by local Lorentz transformations (a 
symmetry), and he extends that idea to include quantum attributes. In a way, the inertial field gauge 
might be thought of as gauging the entire Poincaré group (which includes translations and Lorentz 
transformations) along with internal symmetries. Doing so is conceptually similar to what is done in 
gauged supergravity or certain unified theories, but Gibson’s route is through this physical notion of 
an inertial continuum rather than abstract algebra alone. 

• Modern Geometric QFT: Over the decades, physicists have increasingly used geometric language 
(fiber bundles, connections, curvature) to describe field theories. For example, the statement “the gauge 
field is an Ehresmann connection and its curvature is the field strength” is now a standard 
understanding22. Similarly, “general relativity is a theory of a principal connection on the frame bundle of 
spacetime” is a modern geometric view3. Gibson’s paper aligns with this trend, couching the 
discussion in geometric terms (spheres, rotations, inflections) rather than just equations. One could 
draw an analogy with the Higgs field in the Standard Model: the Higgs is a field permeating all space, 
and particles acquire mass by interacting with it. Here, the inertial field permeates all space, and 
particles (as localized inertial field excitations) acquire both mass and gravitational interaction 
from it. The inertial field could be seen as a kind of Higgs-like field but far more encompassing, since 
it’s responsible for all quantum properties. In fact, by linking mass to length universally, it achieves 
something conceptually similar to the Higgs mechanism (giving particles rest mass) but uses a constant 
t (equal to ℏ/c) instead of a vacuum expectation value. 

We can also contextualize Gibson’s approach in light of Mach’s principle and relational mechanics: Mach’s 
principle posits that local inertial properties (like mass or inertia) arise from the global distribution of matter 
(the distant stars). Gibson’s inertial field is somewhat in that spirit – it implies that inertia is not an intrinsic 
property of a particle alone but of the particle interacting with a universal field. In his equations, cosmic 
parameters like the Hubble constant even sneak in (he relates a “differential impedance” of the field to the 
Hubble expansion rate to estimate the fundamental mass m046,47). This suggests that the inertial field’s 
properties might be tied to the universe’s large-scale structure (expanding universe), again resonating 
with Machian ideas. In a gauge theory language, that might indicate the “zero mode” or background value of 
the gauge field (like a classical background solution) is set by cosmic boundary conditions. Modern QFT in 
curved space or cosmology does consider vacuum states influenced by cosmic expansion, etc., so there is a 
potential connection to explore there, though Gibson’s work is more heuristic on this front. 

Finally, by situating Gibson’s unification gauge next to mainstream theories, we see its ambition: it strives 
to provide a single explanatory framework where today we have a patchwork (quantum gauge theories for 
forces, and a separate geometric theory for gravity). The Standard Model already demonstrates the power 
of gauge theory – it treats three of the four fundamental forces as gauge interactions and has been 
tremendously successful45. The remaining challenge has been gravity, and attempts like quantum gravity, 
loop quantum gravity, and string theory all try to bring gravity into a similar fold (often introducing graviton 
fields or higher symmetries). Gibson’s inertial field proposal is an unconventional but intriguing attempt to 
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do the same by positing a common origin for particles and gravity in a classical-like field. If one can 
reformulate his ideas rigorously, one would likely end up with a Lagrangian that contains terms resembling 
both the Einstein–Hilbert action (for the inertial field’s geometric curvature) and Yang–Mills terms (for 
internal gauge curvatures corresponding to other forces), tied together by the constraints like m⋅r = ℏ/c . 
In that sense, it could be a novel kind of unified field theory. Historically, many physicists (including 
Einstein) attempted unified field theories that often geometrized other forces or extended spacetime – 
Gibson’s approach is a descendant of that tradition but updated with quantum insights and the language 
of gauge invariance. 

To conclude, Gibson’s unification gauge on the inertial field can be seen as a synthesis of several 
threads: the geometric view of gravity from general relativity3, the internal symmetry view of forces 
from Yang–Mills and the Standard Model48, and the notion of a pervasive field giving rise to particle 
properties akin to the Higgs or Mach’s principle. By interpreting his work in the established language of 
QFT, we identify the inertial field as a base manifold with its own principal bundle, the inertial constant  
t as a fundamental invariant gauge coupling linking space and mass, and the gravitational and quantum 
particle phenomena as arising from a single gauge connection’s curvature (with “curvature” covering 
both spacetime curvature and gauge field strength in a unified way). This approach, while speculative, 
offers a pedagogically rich example of how gauge theory concepts can be expanded to explore new 
unifying principles in physics – precisely the kind of big thinking that has historically led to breakthroughs 
in how we understand fundamental forces. It remains to be seen whether Gibson’s unification gauge can 
be cast into a fully consistent mathematical theory, but the ideas map clearly onto the framework that any 
graduate student of gauge theories and QFT would recognize: fiber bundles, connections, covariant 
derivatives, and symmetry invariance are all lurking in his descriptions22,21. The hope is that this 
framework could one day connect to or even predict observable physics beyond what the Standard Model 
and GR currently describe, fulfilling the longstanding goal of a unified field theory that encompasses 
gravity in the same language as quantum fields. 

 

Sources: Gibson, M. Defining a Unification Gauge on the Inertial Field, preprint (submitted) 
  https://uniservent.org/wp-content/uploads/2024/11/Defining-a-unification-gauge-on-the-inertial-field-rev-113024.pdf 
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