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The Quantum Metric 
 

Mart Gibson 
 

Abstract 
 
This analysis provides a physical, i.e. geometric, as well as mathematical, model of 
quantization, by way of a fundamental discrete oscillation/rotation, of a classical 
spacetime continuum that is a function of the exponential expansion of that spacetime.  
Quantum gravity arises naturally as the differential of that oscillatory transverse wave 
force with respect to expansion stress and the strong interaction as the operation of that 
wave force between two or more quanta within a shared force domain.  This quantum 
state is expressed as a modification of a chargeless extreme Kerr metric with an 
oscillation of the I coordinates imposed by continuity conditions which prevent 
coordinate entanglement.  It thereby constitutes a physical spinor, constituting the 
quantum magnetic field and the property of ½ spin and isospin in the presence of other 
quanta.  The ergosphere of this quantum metric is the domain of the strong interaction. 
Finally, it shows that from a universal bookkeeper reference frame, the fundamental 
quantum scale is the neutron scale, for which the Planck scale is the current differential. 
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Introductory Assumptions 
 
It is a fundamental assumption of this analysis that the 3-dimensional physical space of 
observation and experimentation is undergoing a phenomenological expansion at an 
exponential rate.  Symmetry conditions require that what is stated as an expansion from 
any local reference frame must be expressed as a condensation or contraction of that 
locus away from its surrounding extents from the universal reference frame.   From either 
conceptualization the ratio of universal extent to a local unit length, r0, is increasing.  
With respect to the 4-dimensional spacetime of general relativity, such expansion means 
that the proportion between the local unit standards of space and time must remain 
constant during this expansion for the speed of light in vacuo to remain invariant.   
 
The 3 dimensions of space constitute a 3-manifold without boundary which is embedded 
in a 4-manifold.  Generalization from lower dimensions suggests that the 3-manifold is 
the boundary of a 4-core or 4-ball, currently in an apparent expansion phase, conceivably 
part of a universal harmonic oscillation.  Of interest is that the 4-stress of expansion can 
be represented in 3-space as an isotropic 3-stress, as by analogy a 3-stress of an 
expanding 3-ball on its 2-sphere boundary, i.e. tension, can be represented as an isotropic 
2-stress, i.e. a shear, in the boundary 2-sphere. 
 
Spacetime in such model has a potential energy density that is converted to isotropic 
stress and kinetic strain with expansion.  The decomposition of that stress into orthogonal 
alternations of tension, shear, and torsion stress results in a local strain oscillation within 
and of the 3-space.  This oscillating strain, in turn, is registered as quantum spin energy 
and the rest of the various quantum spin functions.  Quantization of spacetime and the 
physical properties of quanta are thus emergent properties of spacetime under isotropic 
expansion.   
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0 – Kinematics and the Geometrization of Time 
 

“Mechanics . . . is generally regarded as consisting of kinematics and dynamics.  
Kinematics . . . is the science that deals with the motions of bodies or particles 
without any regard to the causes of these motions. Studying the positions of 
bodies as a function of time, kinematics can be conceived as a space-time 
geometry of motions, the fundamental notions of which are the concepts of length 
and time.  By contrast, dynamics, . . . is the science that studies the motions of 
bodies as the result of causative interactions.  As it is the task of dynamics to 
explain the motions described by kinematics, dynamics requires concepts 
additional to those used in kinematics, for “to explain” goes beyond “to 
describe”.”1

 
To take up the task set forth by Max Jammer, we might look for explanation of dynamics 
in a greater understanding of those “concepts additional”, chief of which is mass; in 
particular we might also seek “to explain” those additional concepts through a more 
detailed description of the kinematic concepts of length and time.  We would seek to find 
a definition of mass as a measure of length and/or time.  In order to properly undertake 
such an investigation, we must first examine the concepts of length and time.   
 
Length is a concept used to quantify the phenomenological fact of the spatial separation 
of entities, where entity might be any distinction within the field of observation, 
including the two ends of a ruler.  Defining each and every element of a language in 
terms of that language necessarily involves some degree of circuitous reference.  Whether 
recognized as such or not, certain primary concepts must be employed in a linguistic 
development, which are understood apart from the language itself, based on the 
assumption of a common experience by those employing that language.  The quality of 
spatial separation is such a concept.  From birth the vast majority of humans understand 
proximity to and separation from the warmth and sustenance of a mother, long before 
they understand speech, and they begin to conceptualize and quantify that separation at 
least as soon as they are able to visually focus and manually reach. 
 
Two intelligent individuals who have never had a sense of sight or touch would have a 
difficult time developing, let alone communicating, a concept of length, though the 
concept of frequency and intensity would be accessible and communicable through the 
senses of hearing, smell, and taste.  These same two sightless individuals might have little 
trouble developing a concept of time as a quantification of the phenomenological fact of 
the temporal separation of occurrences, such as the wait for the next feeding or the rate of 
their mother’s heart beat while being held.   
 
It is of interest that the magnitude of such time is commonly and customarily referred to 
as a length.  We ask how long it has been since the last time we experienced some event, 
and we ask how long it is from point A to point B, generally meaning the duration of the 
trip rather than the distance.  Perhaps most significantly, we crave or long for something 
                                                 
1Jammer, M. 2000, Concepts of Mass in Contemporary Physics and Philosophy, (Princeton: Princeton 
University Press) p. 5 
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we want which is remote from us in time or space, for something which we would like to 
have present.  Humans appear to easily conflate measures of separation in time and in 
space with one term, length, and to join them together in a term for the rate with which 
some desired goal is approached, speed.  However, there is no more than a conventional 
preference for the ordering of that relationship, as a mile in four minutes and a four 
minute mile indicate the same race speed or  

 1 mile 4 minutes 1 space or time interval
4 minutes 1 mile 1 time or space intervalracec    . (0.1) 

 
In a similar fashion, we can state a number of times per time or of lengths per length, i.e. 
a frequency in time or space, as 

 4 flashes 3 feet or 
1 second 1 yard

,t lf f  . (0.2) 

 
A length of spatial or temporal separation can be termed an interval between entities or 
events, as is done in general relativity.  Obviously a single entity can have multiple 
events, as with a flashing beacon, and we might suppose less obviously, that a single 
event can have multiple entities, as would be the case with a “big bang” or similar font of 
cosmic inception, as well as multiple perceptions of the event.  To any well-thinking 
individual, this does not mean that temporal and spatial separation, or simply put, time 
and distance, are the same qualities by virtue of the use of this common reference term, 
but it does suggest that we might equate them mathematically with the use of some 
universally acknowledged gauge or standard of proportion, and we look for some 
extremum rate of change or motion as a basis for that gauge.  Thus in relativity the speed 
of light, held to be a maximum, is used to gauge a length of time, converting it to a length 
of distance.  We might also use as our gauge some rate held to be at or approaching some 
minimum, for example the expansion rate of space itself, the Hubble rate which on a 
local level is quite small, approximately 7.87 x 10-27 times smaller than the speed of light. 
 
It bears emphasizing that the use of the same term for a separation by time and by space 
can be misleading.  Spatial length is considered a primary concept in this discussion, 
understood by common experience (of the sight and touch gifted) and ultimately outside 
the capacity of formal, non-self-referent definition.  In simplest manner, its magnitude is 
determined by holding two objects in proximity, one of which is a standard and the other 
of which is a test object.  We might also consider temporal length as a primary concept, 
especially if we were one of our two sightless, non-tactile individuals, for whom it would 
necessarily be so.  However, we tend to define time quantitatively in terms of a primary 
length concept, as with the inverse speed of light, as a comparison of the length rate of 
change along the circumference of a clock face contemporaneous with some other 
change.   
 
Taking a hint from the nomenclature of simple arithmetic, we state that a velocity is the 
distance transited by some object divided by the number of times some other distance is 
transited at a regular rate, such as the number of times the end of a hand on a clock 
transits a distance on the circumference of the clock face designated as a unit standard 
interval.  In the final analysis it is a comparison of two physical lengths, where the 
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customary human standard itself is gauged to correspond with the tangential distance the 
earth rotates at the equator during (approximately) 1/24th, 1/1,440th, or 1/86,400th of its 
diurnal cycle per hour, minute, or second respectively.   
 
In similar fashion we can state that a frequency is the duration of some not-necessarily-
spatial change, i.e. the flashing of a beacon, divided by the number of times that the end 
of the standard hand transits a standard interval or multiples or fractions thereof.  Time is 
a comparison of two different rates of change, so that in the absence of motion or, more 
abstractly, change, time does not exist. 
 
The reader may object that it is not the length transited by the end of the clock hand but 
rather its angular speed, the number of degrees, or radians, T, transited, that marks out 
time.  The circumferential length and angular speed are, of course, related by the length 
of the hand itself.  All 60 second analog clocks move ideally at the same angular rate, 
regardless of the length of their hands, resulting in a varied velocity at hand tip that is a 
function of the hand length.   
 
If we disregard real physical dynamics induced by the mass of the clock arm, we might 
envision that its velocity is limited at the end of its moving hand by the speed of light.  
Therefore, in an ideal clock we might stipulate that the length of time taken for light to 
travel from the center of the clock face to the end of the hand, be it hour, minute, second, 
nanosecond or yoctosecond, is equal to the length of time for the tip of the hand to travel 
the same distance tangentially about the face, i.e. for one radian.  Thus its angular 
frequency, Z, will be inversely related and gauged to the length of its arm, r, or 
alternately by its angular wave length, , or its inverse, the angular wave number, N, by 
some constant velocity, c, given by the familiar relationships 

�

 d c c c
dt r
TZ N    

�
. (0.3) 

Some rearrangement and integration of the angular measure, using a normalized value for 
the speed, c = 1, gives 

 
 1

 0
 ,r d ct r tT  ?  ³  (0.4) 

The use of scalar expressions for r and t is significant.  If we treat r as a vector, r, (we can 
even call the clock arm r), with its origin at the center of rotation and its extension point 
at the circumference of the clock face, then it is clear that dT is orthogonal to r.  It bears 
emphasizing that r is a 3-vector.  The unit integral of dT  can be thought of as an operator 
that transforms r orthogonally into a tangent vector, ct, so that r and t are seen to be 
essentially orthogonal to each other, stated explicitly using the orthogonal sense, i, as  
 r ict  (0.5) 
with the scalar form 
 r ct . (0.6) 
But such orthogonality, here made explicit in equation (0.5), is exactly what a 
dimensional relationship between space and time demands.  The presence of the c is 
simply as a normalizing coefficient or reminder that r and t are normalized as indicated in 
equation (0.4), or with the use of the orthogonal sense, i, as in the normalized identity 
 i{r t . (0.7) 
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Since r is radial and t is tangential, it is immediately apparent that in addition to being 
orthogonal to a spatial length, r, time is periodic.  It continues to cycle around the origin 
of r, and assuming that r is set to some unit standard, r0, after a period of 2S it will return 
to its starting point and will continue to cycle at the invariant rate or angular frequency 

 0
0

d
dt r

cTZ   . (0.8) 

We can envision r0 rotated to any direction in three dimensional space, with its origin 
translated in any direction, and the dimension of time will remain extending orthogonally, 
that is, tangentially from the instant point of r0, as shown in Time Scale 1. 
 

 
Time Scale 1 - Clock face fixed/rotating hand  Time Scale 2 – Clock face rotates with hand 

We might think of the instant r0 as equal to a unit base vector along an instant spatial 
dimension x1, for which x2 and x3 are the remaining instant orthogonal dimensions 
necessary to span a three dimensional space.  Since we are limited to three spatial 
dimensions, xi =1,2,3, in most graphic representations, the addition of an orthogonal 
dimension of time, t = x0, involves representational difficulty.  Note that in the last 
paragraph, were we to shift the origin of tangent t0 from the point to the origin of the 
vector r0, t0 would be co-linear with another unit vector orthogonal to r0, call it ir0, that is, 
to another spatial dimension, say x2, so that in a 2 dimensional graphic representation of 
spacetime t = x2, necessarily substituting the dimension x0 for, or suppressing, x2.  In a 3 
dimensional depiction, we might make the equation of t = x3, representing physical space 
as a two dimensional plane, x1-x2.  Both methods are used in discussions of general 
relativity, with the familiar warping of spacetime represented by a curving funnel in the 
3-D depiction.   
 
While such representation has its time tested merits, it yet depends upon the explicit 
relationship of equation (0.5), which in turn retains the implicit relationship of equation 
(0.8).  We would hope, therefore, to find a representation of spacetime which can depict 
time as orthogonal to all three dimensions of space, without the suppression of one or two 
spatial dimensions.  In such case, time can be though of as a compactified dimension 
resident on some scale, r0, at each locus of 3-D space. 
 
For a registration of time on a clock face, a single, vector like time hand is convenient, 
but some reflection will indicate that the same standard of change could be applied to the 
clock face as a whole.  Instead of the hand moving about the face, we might imagine the 
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hand along with the entire face rotating about some center, within the surrounding 
volume of space.  Any spot on the circumference at a distance of r0 from the center 
represents the origin of a tangent unit time vector t0, its direction either clockwise or 
counterclockwise.  The clock face, i.e. time itself, then is moving orthogonal to two 
spatial dimensions, say x1 and x2, as shown in Time Scale 2.  Note that it is moving 
orthogonal to r0 and orthogonal to an arbitrary  x1 and x2 centered on the origin of r0. 
 
Since we have stipulated above that the clock hand can be rotated or translated without 
changing the relationship of equation (0.5), the same can be said for a rotation or 
translation both in 2-D and in 3-D space of the whole clock face.  Sticking to the 2-D 
case, in x1-x2, we can designate a pair of differential vectors, dt, pointing clockwise and 
counterclockwise, at each possible location of the point of an r0 about the clock face, so 
that the sum of all dt forms two superimposed circles about the instant center of the clock 
face.  The dimension of time then forms a circle of radius r0 about each point in x1-x2.  
This can be related to a polar coordinate system, in which the arm of the clock face, r0, is 
a norm and the x1-x2 plane is sectioned as the T coordinate about its origin.   
 
What about a 3-D space?  In x1-x2-x3, we can once again designate a differential vector 
pair, dt, at each possible location of the point of an r0 about the clock face and at each 
possible orientation of the clock face within the 3-space, so that dt can point anywhere in 
a tangential plane and so that the sum of all dt forms an infinitude of superimposed 
spheres about the instant center of the clock face.  Thus the dimension of time, t, is 
orthogonal to all three spatial dimensions, xi, of any arbitrary spatial orientation at the 
points xi = +/-1.   
 
Now we can simplify and make things a bit more definite as in Time Scale 3.  For any 
clock face T of radius r0 in T� an arbitrary x1-x2 plane, rotating about an axis, T, aligned 
with the x3 axis orthogonal to x1-x2, we can find a second clock face I of equal r0, 
concentric with, orthogonal to, and rotating with T, i.e. spinning like a coin, while itself 
simultaneously rotating at the same frequency, I TZ Z , about an arbitrary axis, I, where 
I rotates in T and with T���We can now choose a clock hand, r0, its origin at the center of 
the concentric clock faces, initially at x1 at one of the two radial intersections of I and T, 
and rotate it with I about I, so that   
 

1. at tT = 0, r0 points to (0,+1,0) and t0I points to (0,+1,+1);  
 
2. at tT = S/2, r0 points to (0, 0, +1) and t0I points to (+1, 0, +1);   
 
3. at tT = S, r0 points to (0,+1,0) and t0I points to (0,+1,-1);   
 
4. at tT = 3S/2, r0 points to (0,0,-1) and t0I points to (+1,0,-1);  and finally 
 
5. at tT = 2S, r0 points to (0,+1,0) and t0I points to (0,+1,+1);.   
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There are an infinite number of r0 in I� they each intersect with the clock face of T twice 
and at the same location in T with each cycle of I about T, and they each extend once to 
each of the extrema in I at +/-S/2.  Thus the point of each r0 and the origin of its time 
vector t0, traces a figure eight oscillation about one half of the spherical shell formed by 
the sum of all time vectors dt.  Note that his motion avoids the coordinate entanglement 
condition.  We can use this graphic depiction of time to great advantage later in our 
discussion.   
 

 
  Time t�T = 0     Time t�T = S/2 

 
  Time t�T = S� � � � � Time t�T = 3S/2   

            
      Time t�T = 2S 

 Time Scale 3 – Clock face rotates with hand and spins on edge at common frequency 
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Note that the same instance of time is represented anywhere on the spherical surface of 
this clock, so that the surface constitutes a co-ordinate singularity.  We can keep track of 
the “length” of time by a count of the number of oscillations of a given r0.  We might also 
envision that the length of r0 is in some manner augmented or diminished by a very small 
amount continually with each oscillation, so that the time dimension is seen to be wound 
up in the manner of a kite string about a constantly increasing or decreasing spatial unit 
sphere.  It is important to remember, however that there are an infinite number of such dt 
continually connected in spherical fashion, so the string analogy should not be stretched 
too far.  It is really the expanse of 3-space both about and within such unit sphere, 
expanding or contracting, that marks the passage of time.  It is the expansion of this space 
at the speed of light, but tangentially and not radially, that gauges time in this spacetime.   
 
Lorentz Covariance 
 
To complete this analysis, we would like to see if this formulation is Lorentz covariant, if 
the standard of time, , so designated will undergo a scale transformation along with the 
length standard, , according to the principles of special relativity.  Returning to 
equation (0.5), we might envision that under some condition, such as the acceleration due 
to cosmic expansion,  contracts to 

0t

0r

0r 0
or r0� .  We divide that equation into its contracted 

version, 

 0 0

0 0

o or ict t
r ict t

  0

0

o

 (0.9) 

and find the unit time standard varies according to the ratio of the unit lengths, as 

 0
0

0

o
o rt

r
 0t . (0.10) 

In special relativity2, time intervals transform according to  
 � �1t tJ Ec  �  (0.11) 
where t is the interval in reference frame F and tc is the same interval viewed in reference 
frame M moving relative to F at velocity, v, as a fraction of the speed of light, c, giving 
the ratio identity�E� which cannot be greater than 1, as 

 v
c

E {  (0.12) 

and the value of J, which cannot be less than 1, as 

 
2

1
1

J
E

{
�

. (0.13) 

Equation (0.12) approaches 0 faster than the inverse of equation (0.13), so the combined 
factor never exceeds 1 and approaches 0 at the limit.  If a relationship can be established 
between the time dimensions in equations (0.10) and (0.11), then we might expect a 
relationship between the factors on the right sides.  We can do this by viewing a unit 
standard, t0, from F and from M.   

                                                 
2 As developed in Stevens, Charles F., 1995, The Six Core Theories of Modern Physics, (Cambridge: The 
MIT Press) p. 183, among many other references. 
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The spatial interval transformation, in which we have aligned r with an arbitrary xi axis, 
is  
  (0.14) �r r vJc  � �t
Substituting from equation (0.6) for t, we have 

 � �1rr r v
c

rJ J E§ ·c  �  �¨ ¸
© ¹

 (0.15) 

which is symmetric with equation (0.11). 
 
Rearranging gives an expression of a proper time, W, and a proper length3, V, which are 
invariants of M, 

 �1t t�W E
J
c

{  �  (0.16) 

 � �1r rV E
J
c

{  �  (0.17) 

 
In the Chart 1 graphic representation of a Lorentz transformation we have aligned the 
spatial axis, r, of a stationary reference frame, F, with the direction of travel of a moving 
frame, M, making it a pure transformation or boost.  This is expressed for the time 
dimension by equation (0.11) and for the space dimension by equation (0.15).  In each 
equation, the unprimed coordinate with respect to F is modified by the two related 
factors, (1-E� and J, to arrive at the primed co-ordinate with respect to M.   
 

 
Chart 1 - (1-E) Component of Boost 

 
While the customary analysis is for an arbitrary x, or in this case, r and t in F, we will 
apply the same to a space and time unit length in F, and , orthogonally aligned.  This 
is shown in Chart 1.a.  The path of M, moving at a velocity v, or a distance of x in time 

, is drawn as the sloped line, and terminates at point A = M(x, ).  The unit of 

0r 0t

0t 0t
                                                 
3 We are not using Minkowski space for our 4-vector and r is simply ct, so that multiplying equation (0.16) 
through by c gives us equation (0.17).  This proper length will be shown to be related to . 0

or
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spacetime has been marked off in decimal fractions.  The normalized speed of light as a 
limit of relative frame velocity is shown with its inverted slope of 1 per 1 .   0t 0r
 
In Chart 1.b, the operation of (1-E) on F indicates the effect of the motion of M, which 
transforms the unit spacetime from that shown in 1.a.  Assume that both F and M begin to 
receive a periodic signal from beyond the left edge of their respective charts when those 
charts are coincident at .  They both know that the signal flashes are spaced 
one-tenth of  apart.  As shown, x and therefore E happens to be 0.4, resulting in a (1-E) 
of 0.6.  After one , F counts ten flash intervals, but M has by that time moved four 
intervals to the right and only counts six intervals. As a result, for F the perceived time 
elapsed before the first signal reaches , therefore the distance from 0 to  is ten-tenths 
or unity, while for M that time and distance is six-tenths of  and  respectively. 

0r rc  
0t

0t

0r 0r

0t 0r
 
Note that the path of M observed from F in Charts 1.a and 1.c, the diagonal through space 
and time, is perceived by M in his own view of this spacetime, as simply a path through 
time, shown by the vertical blue line.  Note also that the shortening of the time scale is 
required if c is to remain normalized and invariant. 
 
This is not the time dilation and space contraction of relativity, however.  If the signal 
had been coming from the right, during the time , M would have counted fourteen 
intervals to a count of ten for F, or a factor of (1+E).  This is simply an instance of the 
Doppler effect, a frequency shift.   

0t

 
As can be seen in Chart 1.c, the gauge or scale factor of the spacetime is the same in both 
frames, as indicated by the identical grid intervals.  The unit time and distance scales of 
the spacetime for each are not themselves modified by this observed modification, and 
we will disregard it in the remainder of the discussion.  It is of interest, though, that the 
product of these two factors equals the square of the inverse of the other factor, J, or 

 � �� � � �
2

2 21 1 1 1 2E E E E J �� �  �  �  . (0.18) 
 
It is the factor J� that we are primarily interested in, as it embodies the change in the scale 
of spacetime reflected in a measured interval through the Fitzgerald-Lorentz length 
contraction, 
  r rJ c'  '  (0.19) 
and through time dilation, 
  t tJ c'  ' . (0.20) 
These in turn would appear to be related to a change in the proper time, W, and proper 
length, V, as in equations (0.16) and (0.17) as 
 d dt dtJ W J c   (0.21) 
 d dr drJ V J c   (0.22) 
 
Following this line of thought, we substitute the unit standards for the un-indexed interval 
coordinates in equations (0.16) and (0.17) to arrive at an expression of a unit proper time, 
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0W , and a unit proper length, 0V , where each is the representation of the unit standards of 
M in F, 
 � �0 0 1ot 0tJ W J E{  �  (0.23) 

 � �0 0 1or 0rJ V J E{  �  (0.24) 
 
Some care is in order here.  While the length contraction is often interpreted as a property 
by which a moving body shrinks absolutely in proportion to its velocity with respect to a 
stationary frame, and while this may in some instances be true, its fundamental statement 
is that the unit standard by which a length, l, is measured in a moving frame is smaller 
than the unit standard in the stationary frame with respect to which it is deemed to be 
moving and from which it is held to be shorter.     
 
In a similar manner, time dilation is deemed to indicate that a given duration of time in a 
moving frame is measured as moving slower from a stationary frame; thus the usual 
depiction of the space traveler who returns to earth after 50 years of near speed of light 
travel, having aged only a couple of earth years.  As in the last paragraph, equation (0.20) 
states the same physical condition as equation (0.19), that the unit standard of time in a 
moving frame is smaller than the unit standard in a stationary frame, thus a duration of 
time is measured as greater, i.e. longer as is a length, in the moving frame, but this does 
not necessarily mean slower.   
 
If our clocks in both the moving and the stationary frame are defined as having hands of a 
length measured by equation (0.19), and the speed of the end of the hand is the speed of 
light, c, then the moving frame will have a longer arm and its angular velocity will 
necessarily be less than that of the stationary frame, and the clock in M will rotate at a 
slower rate than in F.  This is the general interpretation of time dilation.  On the other 
hand, if the length of the hand in M is set to the unit length standard, smaller in M than it 
is in F, then the speed of light constraint for the speed of the hand tip will result in an 
increased angular speed and the clock in M will spin faster.  In such case time will still be 
measured as greater, i.e. longer in M than in F, as a count of the number of clock cycles 
would indicate, in keeping with equation (0.20), since J  in this case is a measure of the 
relative angular frequencies of M and F.  This is so even though the length of the clock 
hand path in keeping with equation (0.8) is the same, or 
 0 0 0 0

o or rZ Z c   (0.25) 
since 

 0 0

0 0 0 0

o

o o

r c
r r

Z
J

Z Z
   . (0.26) 

 
With this in mind, we can combine equations (0.20) and (0.19) as we did in equation 
(0.9), converting from incremental to differential values, and get the equivalent of 
equation (0.10), where this last case explicitly shows the equivalence of the differential 
length ratio and J, 

 drdt dt dt
dr

J
c

c   . (0.27) 
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We have a temporary conundrum, however, as 1J t , but the unit length ratios in 
equation (0.10) and again if inverted from equation (0.26) is less than 1.  The problem 
arises from the nature of a unit standard.  If it is fixed, any change in an interval, 
differential or incremental, will vary directly, proportional to the standard.  If the standard 
itself varies, then the numerical value of a fixed interval will vary indirectly to the change  
in the standard. 
 
Given a fixed interval, l , which is related nominally by J��as measured from frames 
M over F, equation (0.27) measures the identical interval, 

lc{
dt dtc{  from two different 

physical standards.  Equation (0.10) relates two unit standards, , that vary 
proportionally to the two other unit standards, , all related by c.  Thus  

0 0
ot t!

0 0
or r!

 
0 0

o

l l
r r
J

c
  (0.28) 

 0

0
o

r
r

J?   (0.29) 

 
We return now to the charts to see how this might be represented graphically.  Chart 2 
shows an enlargement of the top portion of Chart 1.a in the neighborhood of the time in 
F.  We are analyzing only the effects of the factor J  on the two reference frames and 
disregarding the Doppler effect of (1-E).  Point A represents the intersection of the line of 
motion of M in F and the time coordinate in F for time , designated as 

0t

0t � 0 �,F x t .  In 
reference frame M, based on the above discussion and equations (0.19) and (0.20), this 
same point would be measured as � �0,M x tJ J , which as drawn for 0 4.E  , so that 

1 0910. ...J  , would be (0.4364…, 1.0910…).  Finally, based on these same two 

equations this point is expressed as the intersection of xc and 0t c , as shown in the square 

brackets or � �0,M x t cc .     

 

 
Chart 2 –�J Component of Lorentz Transformation 
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Point B shows the co-ordinates in F corresponding to the numerical values of 
� �0,M x tJ J , and therefore represents an expansion of the line for v by the value of J.  

Thus it expresses M in terms of F and is numerically equal to the value � �0,M x t cc .   

 
Point C shows the numerical value in terms of F for the inverse of � �0,M x t cc  or 

� �0,M x t cc� .  Thus if we were to designate � �0,M x t cc  in M as � �0 4 1 0. , .M , � �0,M x t cc�  

would be .  The time component of C then represents the proper 

time, 

�0 366 0 916. ..., . ...F �

0W , the naught subscript used to indicate its specificity to a unit time standard, 0t c , 
of M, when measured from F, and in keeping with the concept of time dilation, it is 
longer in M than in F.  Thus for a value in M of 0 1t c  , F will perceive an elapsed time in 
M of 0 0 916. ...W  .  Once again, while generally interpreted as a slowing of time in M, 
this “lengthening” of time can be attributed to a shortening of the time standard. 
 
This is all very interesting, but it would be more illustrative if we could find an essential 
depiction of the relationship of F and M involving J  and 0W ��� For instance, the length of 
v from F0 to the three points, A, B and C, embodies the factor of J�, but that factor does 
not arise naturally, or at least readily, from an analysis of the charting of v.   
 
The problem lies in the dual utility of the chart itself.  On the one hand it represents a 
Cartesian background for the plotting of two related bits of data, location in time and in 
space.  From this perspective, the right hand end of the speed of light curve, c, at the 
upper right corner of the chart, represents the time elapsed in F during the displacement 
of a light wave or photon by one unit, or � �0 0,F r t .  On the other hand, it is a 2-D chart of 
spacetime itself, where the speed of light determines the unit speed for the passage of a 
stationary reference frame through time or of a displacement through space with no 
passage of time.  This second usage means that in time , the limit of travel of a 
spacetime vector in the unit spacetime is a circle, or in our chart, a quarter circle, 
described by the unit spacetime vector, 

0t

0R , as distinguished from the space vector, , or 0r

 � �
1
22 2

0R r t � . (0.30) 

We will use the designation 0R for both the vector and the circle described using it as a 
radius, dependent on context.  When 0R is orthogonal to the time axis it is a pure space 
vector and equals and when orthogonal to the space axis is a pure time vector and 
equals .  It should be mentioned that in a 4-D spacetime, 

0r

0t 0R is an invariant 4-vector, but 
that it is not the same 4-vector residing in Minkowski space, as generally used in 
relativity, as the time vector is not subtracted, but rather is added to the three space 
vectors, as in equation (0.50).  While the sum of the four vectors in Minkowski space 
results in a null 4-vector, in this case the addition results in a unit 4-vector.   
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Drawing this condition on the unit spacetime for F gives us Chart 3.a, and we notice 
immediately that the velocity curve used for the moving frame M terminates at A, beyond 
the limit imposed by c; that is, it violates one of the basic assumptions of relativity.  To 
correct this, in Chart 3.b we draw the velocity curve, , through the intersection of ov

0R and 1x  at , as shown in close-up in Chart 4, and find on closer inspection that this 
corresponds with the time value of 

0A

0W for 1x .  In fact, for any value of 00 x r� � , this 
condition will be found to hold, which means that the secant of the angle between and 

 equals J, or 
0t

ov

 
0 0

o oOB OA
t

J
W

  . (0.31) 

 

 
Chart 3 – Contraction of J Component of Lorentz Transformation 

 
Chart 3.c, a condition at a much higher velocity, shows more clearly the relationship of 

and ov 0W .  We construct a second circle for 0
oR such that 0 0 0

o o oR r t  , where 

 0
ot 0W{  (0.32) 

 
The orthogonal projection of the intersection of 0R and  onto ov 0W intersects the curve v at 
point C, while an orthogonal projection from C onto 0

oR intersects 0
oR and at the same 

point, .  Thus we have the similar triangles,

ov
oC o o o oB AA A CC� , and 0

oR  represents a 
contraction in the moving frame of the unit spacetime vector 0R .   
 
Chart 4 is a close-up view of the top portion of Chart 3.b, showing the contraction of v 
into .  We will call this reference frame .  represents the same physical condition 
as A in F.  The displacement x remains as the same percentage of , but the time scale at 
that point is now the proper time,�

ov oF oA
0r

0W .   In square brackets, that same point in oM is 
numerically identical to � �0,M x tJ J  at A, however, the unit time standard,  and the 

related 
0 1ot  

ox , are in oM  instead of F.  Thus the unit standard is local to oM  instead of the 
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expression of a stationary spatial background.  If we can think of the time dimension 
o
tM as being inclined along the slope of instead of orthogonal as in F, the same 

spacetime numerical values hold in both reference frames. 

ov

 
In keeping with this observation, is proportionally the same to as C is to A.  In oC oA

oM , the unit time and space standards apply as indicated by 0
oR , so that � �0,o o oM x t  is 

numerically equal to � 0 �,F x t shown at A, or in this case, (0.4, 1.0).  For the proper time, 
with all values in units of F, we have the following identity,  
  (0.33) 1

0 0
otW J J �{ { 0t

 
Point oB indicates the nature of time dilation as conventionally figured.  At point , oA

oM has traveled the same length of time as F, as given by 0 0R t , but to F this is 
registered as the proper time 0W .  By the time oM reaches oB , which F registers as 1.0, F 

has moved on in time to 0tJ .  The length of , ov oOB , is equal to J. 

 
Chart 4 – Close-up of Contraction 

Perhaps the most significant aspect of this representation is that the secant of the angle of 
O establishes J, underscoring the geometric nature of time.  Expanding on the 

relationships of equation (0.31), we have 
0t

ov

 0 0 0

0 0 0 0 0

o o o

o o o

R tOB OA OB OB OA
t R t OA OCOA

W
J

W W
         (0.34) 

 
We have examined the Lorentz transformation with respect to time and proper time, but a 
similar analysis could be made with respect to space and a proper distance as modified 
from the conventional Minkowski representation as noted earlier.  The case of time is 
more germane to our present discussion, as will be seen. 
 
The above charts suggest that spacetime curvature is as much a matter of curvature of 
time as it is of space.  Chart 3 indicates that as a moving reference frame approaches the 
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speed of light and v approaches co-linearity with c, and J  approach infinity and co-
linearity with the space axis, r, and the time and distance scales indicated by 

ov
0

oR become 
exceedingly small, and in the same proportion.  This is precisely what we analyzed 
initially with equation (0.5) and a cyclical time dimension.  If we envision M as an 
accelerating reference frame starting from rest at and accelerating to c within the first 
unit of spacetime, we would find that the contracted velocity curve, , and the collinear 
contracted time dimension would curve, and that under certain constraints,  would arc 
like a quarter circle.  Its constantly shortening time standard, , then is aligned with the 
arc of J, and its space standard, , correspondingly shortened, rotates with and 
orthogonally to it.   

OF
ov

0
ot

0
or

 
A physical instance of this shortening of both and  can be found by examining the 
nature of the deBroglie wavelength of a massive particle.  We assume that the reduced 
Compton wavelength,  is indicative of the rest state of such a particle, and is 
determined by dividing the reduced Planck’s constant, = , by the product of the speed of 
light and the particles rest mass, m, 

0
or 0

ot

C�

 C mc
 
=� . (0.35) 

The reduced deBroglie wavelength, , is the quotient of and the particle’s relativistic 
momentum, p, at velocity, v, given as 

dB� =

 dB p mvJ
  
= =�  (0.36) 

where the factor J  is the same as used in the development above.  Combining and some 
rearrangement gives us the ratio of these reduced wavelengths as  

 C

dB

v x
c

J JE J   
�
�

. (0.37) 

 
In Chart 4, this is represented by the tangent of angle T between the time axis in F and  
at point and gives the ratio of the particle velocity in F, where 

ov
oA � � �o �A x A x , and the 

contracted unit standard, .  Thus 0
or

 
0 0 0

C
o o

dB
o

x x x
r t R

   
�
�

 (0.38) 

and as we approach the limit of the speed of light and x approaches 0 1r  , we have 

 0

0
C dBo

r
r

J  � � � dB

0r

 (0.39) 

Thus, in the extreme case 
 0if  then , o

C dBr  � � . (0.40) 
Since the frequency and wavelength are related as 
 C C dB dB cZ Z  � �  (0.41) 
rearrangement gives, in the extreme case 
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 0 0

0 0

o
C dB C

o
dB C dB

t r t
t r t

Z Z
J

Z Z
      
�
�

0

0
o

0

, (0.42) 

therefore we also have 
 0if  then , o

C dBt t t t  . (0.43) 
 
Considering a normalized frequency, that is, where the angular displacement, 0T T , 
always equals 1 and the time consequent varies according to the particular F from which 
it is observed, we can integrate equation (0.25) for any time  0 0

o ot qt q t  

 
 

0 0 0 0 0  0

t o or dt rZ Z 
 t
dt³ ³  (0.44) 

 � � � � � �0 0 0 0 0 0 0 0 0
o o o o o or qt r qt r q tZ Z Z   (0.45) 

  (0.46) 0 0
o oqr q r q rJ  0

o

and finally 

 0 0

o
o qr r r

q
J  0

o  (0.47) 

therefore 

 0 0 0

o
o qt t t

q
J  o  (0.48) 

showing that J� is simply the frequency ratio of the unit standards of space and time 
between a moving and a stationary reference frame. 
 
It is worth noting, that this ratio is unity when 1

0 0 2
o ox R r   , that is, when r equals t at 

the intersection of the curve of c and 0R .  If we consider a massive particle as some 
manner of physical stationary waveform, i.e. a bound, rotating wave, a ratio of unity 
represents the point at which the translational displacement of the particle in space begins 
to outrun the transverse wave displacement, i.e. its displacement in time.  It is the point at 
which the contracted velocity, , equals the speed of light.  Prior to that point the 
waveform could conceivably flatten in space in the form of an oblate spheroid.  From that 
point on, the waveform becomes prolate or contracts in all dimensions to keep from 
outrunning itself. 

ov

 
It follows immediately that from any reference frame F in 4-D spacetime, for a moving 
frame M, a unit standard can be given for space by and for time by , both related to 
a 4-vector (of additive components), 

0
or 0

ot

0
oR , as 

 � � � �� �
1
22 2 01

0 0 02
o o o RR r t

J
 �   (0.49) 

where 

 � � � � � � � �� �
1

1 2
2

2 2 22 2 21 1 1 1 1
0 0 0 01 02 03 02 2 3 3 3

R r t x x x t �  � � � . (0.50) 
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If we shift the origin of  in Chart 3 from the origin of  to its point, we have the 
configuration shown in Time Scale 1 and 2.  From there we can extrapolate to the 3-D 
form shown in Time Scale 3 for the expression of a 3 dimensional clock.   

0t
o

0r
o

 
A statement is in order concerning the “relativity” of the reference frames F and M, and 
that of the spacetime scales 0R and 0

oR .  Assuming that F resides in an expanding 3-
manifold, if that residence is isotropic with respect to cosmological red shift, then we can 
state that the local position of F is stationary with respect to space and in an extremal  
position of change with respect to time.  Otherwise, F would experience a blue shift in 
the direction of its travel with respect to space.  In similar fashion, F could experience 
such an anisotropy while rotating about a center, perhaps galactic or supergalactic, that is 
itself stationary or isotropic with respect to cosmological red shift.  Thus at every point in 
spacetime, assuming an isotropic expansion, there exists a potential F for which 0R is a 
local maximum, though 0R  at all points need not be identical.  For any moving reference 
frame M at that same point, 0 0

oR R� . 
 
Thus we can envision a 4-D spacetime with Lorentz covariance in which the time 
dimension is modeled as a compactified rotational dimension orthogonal to the three 
space dimensions, as developed earlier.  Having taken this side-trip into an investigation 
of spatial and temporal length, we can now look at the concept of mass. 
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1 – Geometrization of Mass in Classical and Quantum Theories 
 
In his book, Concepts of Mass in Contemporary Physics and Philosophy, Max Jammer 
delineates three types of mass4; inertial, active gravitational (corresponding to a source) 
and passive gravitational (corresponding to a test particle), and concludes that the jury is 
still out as to whether these represent distinct concepts of mass.  Looking at the related 
concept of inertia, we can readily see that it can be quantified in terms of length and time 
by the concepts of displacement and velocity.  For simplicity, we limit our thought 
experiments to analysis in one spatial dimension, unless stated otherwise. 
 
 
Inertial Mass 
 
Inertia is “a resistance to any change in the momentum of a body”5.   

1. An absolute or infinite inertia would indicate immobility or a displacement of 
 from the reference frame of that body or a change in velocity of  

from any arbitrary reference frame, resulting from interaction with another body.   
0dx  0dv  

2. An absolute lack of or zero inertia would indicate an instantaneous displacement 
of a, an undefined or relative infinite displacement or change in velocity due to a 
finite displacement with zero passage of time.   

3. A finite displacement of a body, a, over a finite time duration resulting from its 
interaction with another body is a measure of its finite inertia, i.e. of its inertial 
mass.   

 
While “body” has been historically conceived as a classical entity, substitution of the 
term “particle” understood in quantum terms, should not change the meaning of “inertia”.   
A free body or particle is generally conceptualized as moving within and through a flat, 
three dimensional space, which of itself and in the absence of any field potential or other 
bodies or particles of either mass or energy, constitutes both a phenomenological and an 
ontological void.  By the above definition and our expansion of it, however, a space upon 
which we can superimpose a metric, in and of itself exhibits the property of inertia, since 
it has a definite resistance to change and in the case of physical space, appears to have a 
finite, albeit accelerating, expansive momentum as evidenced by cosmological red-shift.  
By virtue of such property, space even without quantum fields can not be said to be either 
a phenomenological or an ontological void.  Within such space, time can be seen as the 
path of its inertial change.  
 
In the interest of gaining a geometric, descriptive explanation of mass, we will investigate 
inertial mass first as a classical target or test body or particle.  For body a the magnitude 
of its mass, ma, is indirectly proportional to the displacement, xa, over the time interval of 
an interaction, ta, under a given impulse, J, from another body or source, which results in 

                                                 
4 For the etymologically inclined, mass is from the German massieren meaning to knead dough, and evokes 
the notion of folding and stretching  the dough with the heel of the hand, turning it 90o, and repeating the 
process, which forms gluten, allowing the dough to catch the gas of the leavening agent and expand. 
5 Lapedes, Daniel N., Editor in Chief 1978, McGraw-Hill Dictionary of Physics and Mathematics,  (New 
York:  McGraw-Hill Inc.) 
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a final velocity for a of va, and is therefore directly related to the time interval per that 
displacement, 

 1
2

a
a

a a

tJm
v x

  J . (1.1) 

 
In general relativity, mass is geometrized in direct relationship to length, and we can find 
a direct relationship between mass and length in the aggregation of bodies or particles.  
As in the case of stellar configurations, the product of the volume of the body and its 
average volume inertial density computes the mass of the body, so that for a given 
density, i.e. the number of quanta times the average mass per quanta per volume, the 
reduced circumference of the body gives a geometrized approximation of its mass.  
 
The definition of impulse6 is the integral of force with respect to time which is equal to a 
change in momentum, 'P, 
 � �

 

 
 J Ff

i

t

t
t dt P  '³ . (1.2) 

 
While in general the force, hence the acceleration, will vary over the duration of the 
impulse, for ease of illustration, we will use a constant force and acceleration, i.e., the 
average over the duration.  In this case a is accelerated from an initial velocity, vai, to a 
final velocity, vaf, over the time interval 0f i at t t t t t' a �  �  .   The time subscripts 
indicate that at time , .  Starting at the end of such interaction, at time 0it t 0aiv  

f at t , the final velocity of a will be reached at af av v , and it will continue on at that 
velocity in its original reference frame, F.   
 
We assume that the source of the impulse and the test body exist in a steady state in their 
respective rest frames and in isolation from each other and any other interactions both 
before and after their collision, but that during their interaction they each undergo an 
acceleration and an exchange of momentum and energy.  Thus the acceleration for a is  

 2

2af ai a
a

a a

v v xa
t t
�

   (1.3) 

and the force is 

 2

2 a
a

a

xF m
t

  (1.4) 

 
Since the time interval for the acceleration of a body and the time interval found in the 
statement of its velocity is the same as the interaction interval, tf, we have the following 
time independent parameter of an interaction 
 � � � �

  21
2  

   J F Ff f

i i

t t
xf ft t

t dt t t dt t m    ³ ³t f

                                                

 (1.5) 

 
6 Halliday & Resnick, 1988, Fundamentals of Physics, (Ext 3rd ed.; New York: John Wiley & Sons, Inc.) 
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where the letter t (tav) is an inertial constant of the interaction, of mass-length 
dimensions.  Equation (1.1) can then be expressed in a time independent scalar form 
where mass is the inverse measure of the space interval of the interaction,    

 a
a

m
x

 
t . (1.6) 

We can postulate a second condition, with J and t unchanged, for a body b, for which  
 . (1.7) bm m! a

Therefore, we have  

 1
2

b
b

b b

tJm J
v x bx

   
t  (1.8) 

 
and the following inequality 
 bv va� . (1.9) 
This indicates that   
 b ax xd  (1.10) 
and would suggest that 
  (1.11) bt tt a

ahowever, the time intervals cannot be equal if bx x .  That is, the lower velocity of vb 
may be the result of a smaller displacement, a longer interaction time, or both.  In any 
case, the inverse velocity will be greater for vb, so that for a test body or particle, mass is 
an inverse measure of the displacement and a direct measure of the inverse velocity of the 
interaction, and a geometrized mass should reflect that kinematic relationship. 
 
It is of interest that if we consider a source for our impulse above from a classical body, 
A, of mass, MA, where 
 A aM m� , (1.12) 
moving with an initial velocity of VA, prior to the interaction with a, we find the 
interaction conforms to the following equation  

 
� �

2 A
a

A a

Mv
M m

 
� AV

A

. (1.13) 

Therefore, at the extreme, 
 2av V|  (1.14) 
and the final velocity of the test body is principally a function of the source velocity and 
not of the source mass.  We would expect that a similar relationship would hold, if 
instead of representing a source in an elastic collision, MA represented a gravitational 
source.  If gravitational and inertial mass are equivalent, then MA VA represents the 
impulse generated by that source, and the final velocity of a test particle a is limited by 
equation (1.14).  Thus if VA is limited by the speed of light, c, then va will be limited to 
2c.  While this appears to be a violation of the postulates of relativity, it is precisely what 
is predicted by general relativity at the horizon of an extreme Kerr black hole. 
 
Returning to our test body, now assuming it to be quantum, we see that equation (1.5) is 
related to the action, S, of the interaction, using Maupertuis’ principle, by 
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22
2

2
  

2 2

f f

i i

x x f f
fx x

f

f f
f f

f

mmS x d d
t t

m
t

Z

 �  �  �

 �  �  �  �  

³ ³

t t t =

f

x x
J x x x

x v
x c x

. (1.15) 

 
As S is likewise an invariant of the interaction, and m and x are inversely related, so t 
must be inversely related to m as well (and directly related to x). Inverse time is the 
expression of a rate or in this case unit frequency of interaction, so that mass is the 
dynamic representation of the kinematics of that unit or angular frequency of the 
interaction, which varies in proportion to the mass and  
 b aZ Z! . (1.16) 
 
Equation (1.15) indicates that the ratio of mass to frequency is proportional to the ratio of 
the inertial constant and the final velocity of the body.  If S and t are both invariants, then 
so must be vf, and with some substitution and rearrangement we have 

 
1
2 f

m
v c
Z Z  

t t , (1.17) 

where 

 
2

2 2
f f f

f f

v x x
c

t t
    (1.18) 

 
This observation concerning the invariance of the final speed in equation (1.17) is 
initially something of a mystery, since it appears to violate the initial premise of equation 
(1.1), though it echoes the comments above with respect to equation (1.14) in the context 
of an extreme Kerr black hole.  The final velocity vf as derived above is a linear velocity 
resulting from the acceleration of a body from zero in an elastic collision, and the final 
displacement rate is therefore twice the actual displacement, xf , that occurs during the 
interaction.  In the quantum case, assuming an inelastic collision in which the kinetic 
energy of the impulse is transformed into the spin energy of the target, the angular 
frequency increases, but the radius of gyration decreases and the value of c remains 
constant. 
 
From this we have the following expressions for the impulse, 
 2 2J P mc Z '   t  (1.19) 
which clearly states mass as frequency and suggests a quantum interpretation, since by 
multiplying through by 1

2 c , (differentiating with respect to time and integrating with 
respect to displacement), we have the mass-energy relationship 

 21
2

cE Jc mc cZ Z
O

     t
== . (1.20) 

It follows that 

 
c

 t
= . (1.21) 
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Returning to equation (1.1) and substituting from equation (1.19) gives the following 
relationship between the length of the interaction and ma, which is as equation (1.6), 

 
2

a a
a

a a

Jtm
x c a

Z N
O

    
t t

t . (1.22) 

We find that for individual quantum mass, i.e. that of the neutron, electron, proton, muon, 
etc., xq is equal to the Compton reduced wavelength, ,C q� , for that quantum, as given by 

 ,q C q
q

x
m

  
t� . (1.23) 

 
Quantum analysis assumes the two fundamental invariants, and c, to which we have 
now added an inertial constant, 

=
t .  Some simple numerical analysis applied to the 

variables of mass, displacement, and time in conjunction with the equations for impulse, 
the inertial constant, interaction terminal velocity and action will help to clarify the 
geometric relationship of mass, length and time. 
 
In the following table, Row A gives our initial, normalized condition for the variables 
valued in brackets in the left-hand column.  In the remaining rows of this table we have 
simply substituted a new body of the given mass, and assumed different space and time 
values according to various impulse assumptions.  The column on the right states whether 
the set of assumptions in the variables column violates any of the assumed invariants just 
stated.  Rows B and C have the same vf, but the space and time intervals differ and 
neither maintains the velocity of the initial condition.  Row D maintains that velocity, but 
violates the action and the related inertial constant condition.  It also departs from the 
initial value of the impulse.  The stipulation of a set value for the impulse was a 
convenience for purposes of development of our argument, but it is not a necessary or 
even anticipated condition of a physical interaction.  Row E is constrained to maintain 
that impulse, thus maintaining the velocity found in B and C, but results in a violation of 
all three invariants and is not a quantum solution.   
 
Only Row F and the related G, while necessarily departing from the initial impulse, avoid 
a violation of the three invariants.  What F and G show at a glance, assuming a quantum 
context, is that quantum inertial test mass is an inverse measure of space and time, the 
latter two of which are identically gauged in keeping with the development of the 
previous section on kinematics in which we saw that 

00 0
o or t Ro  .   

 
In Row F, if the space and time standards are assumed to be smaller by the inverse of the 
factor J due to a contraction in a moving frame after impulse, the increase in the mass is 
found to be by that same factor, showing that Row F is consistent with the postulates of 
special relativity.  Row G, on the other hand, shows an increase in the space and time 
standards in keeping with a change in J  and a corresponding decrease in mass as we 
might find in a moving frame that has decreased its velocity from a prior greater 
differential with respect to some rest frame.   
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As a source, mass is a direct measure of the impulse as shown by the second column of 
Rows F and G.  Further, since the space and time intervals are identical, and we might 
assume symmetrical, i.e. interchangeable, it is apparent that the impulse has the same 
dimensional form as the spin energy of the quantum.  Again, using the angular frequency 
in computing the final velocity, we have the same form for the inertial constant and that 
velocity, so that in natural units,  
 2c c  t =  (1.24) 
and mass and frequency measure the same physical condition, interaction per time 
interval, i.e. the smaller the interaction time, the greater the mass and frequency, as  

 2 1m
c cZ

   
t= . (1.25) 
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Table 1 – Numerical Analysis of Invariant Violation of Certain Variable Assumptions 
 
The symmetries are yet more pronounced since the speed of light, written in terms of the 
properties of a wave, can be stated as the ratio of the angular frequency and angular wave 
number, ,  N

 c Z
N

  (1.26) 

which when substituted into equation (1.25) gives us the symmetrical statement for the 
inertial constant, 

 m
N

 t . (1.27) 
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A couple of words are in order concerning the frequency, which are no doubt obvious to 
most readers.  First, since it is an expression of the ratio between a count of the number of 
units or radian contemporaneous with a unit of time, in keeping with the comments 
concerning equation (0.1), it is equal to a count of one radian per fraction of some larger 
unit of time.  A base or unit frequency would be an extremal, normalized frequency of 
one radian or other briefest instance of change per one smallest standard of time, 

.  Thus an interaction of the greatest frequency and therefore greatest energy 
per equation (1.20) will be the one of shortest duration.  Second, while such normalized 
frequency might be a conventional angular frequency of one radian per unit of time, it 
might equally be one unit of space per unit of time as 

00 0
o ot r R  o

 0
0 0 0

0 0

1 rc r r
t t

Z   . (1.28) 

 
If we state with respect to Rows F and G that  
 0fx r  (1.29) 
then the displacement xf resulting from impulse J, might be a reference to a rotational 
tangent vector at the circumference of the previously depicted rotating clock, instead of 
the customary translational displacement vector at or from a point-like particle.  Such 
impulse, under the constraints of an invariant c, results in a contraction of the clock, and a 
decrease in and in keeping with 0r 0t J , and mass is correspondingly measured as 
increased.  Such impulse could be the result of an inelastic collision with a photon-like 
source or the acceleration arising from some field potential.  It is important to note in 
regards to this last condition, that the increase in mass, as with the impulse, could be 
continual and not in discrete steps and still adhere to equation (1.20), since the frequency 
can increase continually, while the action, S  = , remains invariant at any frequency.  
 
To make graphic sense of this in terms of an inertial spacetime continuum, we can think 
of the aforementioned collision between A and a as an elastic, but constrained collision 
between two bodies of equal mass, so that their motion oscillates in simple harmonic 
motion.  Next we consider a, instead of a body or particle, to be a 3 dimensional 
continuum, non-particulate in composition, isotropic but for a boundary plane at the point 
of impact from A, which is moving normal to and in the direction of a.  Instead of the 
mass quantity of body a, continuum a has a linear inertial density.  That density is 
variable and elastic in addition to being inertial, so that as A meets a, the inertial density 
immediately in front of the line of travel of A, i.e. the mass of a, increases, slowing A’s 
velocity, and the continuum around the area of impact of A on a is strained and curved 
inward.   
 
If we had assumed an inelastic collision, at some point the momentum of A would be 
absorbed by a, which would then remain in a distorted condition, marked by a finite 
degree of strain and curvature of the continuum around the area of impact, and the 
impulse would continue indefinitely into the interior of a. 
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By analogy with the first interaction of bodies a and A above, given a fixed momentum of 
A, the greater the inertial density, and therefore the mass of a, the smaller will be the 
penetration of A and the radius of the strain at the area of the impact.  We can envision 
that there are two instances of curving, one as a generally deformed circular area around 
the area of interaction of a and A and the other along the sides of the generally conical 
deformation of the initial plane of the interaction.  For simplicity we will assume that the 
radii are of equal magnitude, though necessarily of different sense.   
 
With an elastic collision, at some point all the momentum of A will be transferred to a, 
but in the case of a continuum a, at such point all the kinetic energy of A is transferred to 
the elastic potential energy of the stress and strain at the deformation of a. As the shear 
forces in the plane of the interaction of aA exceed the compression force of A on a, a 
force which is transverse to the interaction plane, a will rebound and begin to work on A, 
which will travel in the opposite direction, eventually to be expelled from the plane of the 
initial impact.  We imagine this interaction mirrored by a set up, Aac , opposite a, so that 
the total system  constitutes a condition of simple harmonic motion.   aAac
 
Finally we can dispense with A, joining a to the other continuum, ac , at the boundary 
plane, so that it is the interaction that constitutes a resonant oscillation of a localized, 
spheroidal section of the combined continuum, in which 

aac
0a am m mc  .   

 
Using equation (1.6), we can state the linear inertial density, O0, of the continuum at the 
system as follows,  

 20
0 2

0 0

m
r r 0O N   

t
t . (1.30) 

 
This indicates that the linear inertial density is equal to the inertial constant times the 
curvature of the deformation or strain, as shown in the last term.  Assuming an isotropic 
Gaussian curvature, k, given by  

 2
0 2

0

1k
r

N  , (1.31) 

this means that mass is a measure of linear curvature, given by the angular wave number, 
N, once again indirectly related to the length scale, as 

 0
0

m
r 0N  
t

t . (1.32) 

 
Now we might stipulate that instead of a linear oscillation, this interaction forms a 
rotational oscillation in a plane normal to the intersection of a and ac , along with an 
oscillation in that plane of intersection.  Such oscillation would mimic the rotation of our 
three dimensional clock developed in the previous section on kinematics.  It is suggested 
that the reader review that motion now.   
 
Thus a geometrization of massive-particle mass involves the representation of such 
quanta as three dimensional clocks and indicates that particle mass is a measure of the 
frequency of the clock.  As the above continuum is a representation of 3-D space, its 
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oscillation represents an oscillation of spacetime.  If that oscillation is seen to be at 
resonant frequency, 0Z , then we have the following relationship to the wave speed in 
such continuum 

 0
0 c

Z
N   (1.33) 

which when substituted into equation (1.30) gives the following wave equation, where 0W  
is the tension force in the continuum,  

 
2
0

0 2 2

1
c c
Z

0O W  
t  (1.34) 

 
From this discussion we can state some basic quantum dynamic properties of interest in 
terms of the inertial constant. 
 
 Interaction impulse = transverse wave momentum p mc Z'   t  
 Force – stress force = transverse wave force 2W Z t  
 Action = spin angular momentum S c Z

N
   t t=  

 Rest Mass m
c
Z N  t t  

 Spin Energy 2E mc cZ Z   t=  
 
Lastly, the serendipity of this scenario, with the orthogonal, rotational transformation of a 
3-D clock analogy for the mass oscillation of spacetime and its etymological symmetry 
with the orthogonal folding and rotation of dough in the kneading process of massieren is 
inescapable. 
 
 
Gravitational Mass (Source) 
 
In general relativity, gravitational source mass is converted from conventional units 
related to a force, Mkg, to units of length, Ml, by the conversion factor of GN/c2, where GN 
is Newton’s gravitational constant and c2 is the speed of light in a vacuum squared, both 
of which are taken as free parameters, as  

 � 28
2 7.424 10N m

l kg kg
Gr M M x M
c

�   � kg . (1.35) 

This procedure facilitates computation, as when used in a metric, so that if Ml is the 
geometrized mass of an extreme Kerr black hole, the reduced circumference at the 
horizon is . h lr M 
 
It bears noting that the relationship between the two measures of mass is direct and 
appears to be classical, or continuous, so that we can state a differential form 

 2
N

l
Gdr dM dM
c

  kg  (1.36) 
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We should acknowledge, however, the obvious and logical possibility that Mkg is an 
aggregation of some basic quantized units of mass of one or more magnitudes.  
Consideration of this equation using the smallest of rest-mass quanta, the electron, gives 
a linear measure of its mass in orders of magnitude of 10-58 meters.  For the proton and 
neutron, the figure is slightly larger at 10-54 meters.  However, all of these are much 
smaller than the Planck length of 10-35 the reputed smallest of determinable physical 
scales, raising possible theoretical questions about the use of equation (1.35) in 
determining a geometrized mass for individual quanta. 
 
As previously discussed, from quantum theory, for individual rest-mass quanta, the 
closest equivalent to a length measure of mass is the quantum wavelength, albeit as an 
inverse measure; the Compton wavelength for a quantum at relative rest and the 
deBroglie wavelength for a quantum at relativistic velocity.  For the most part we will 
confine ourselves to the reduced Compton wavelength of a quantum, q, or , and we 
will exclude from discussion photons or other energy quanta.   

,C q�

 
Once more, the mass of an individual quantum, a neutron, proton, electron, tau, or muon 
is related to its reduced Compton wavelength by the following, where the rq is the 
reduced circumference and the norm of a polar coordinate system centered on q. 

 ,
1

C q q
q q

r
c m m

   
=� t . (1.37) 

In the SI system, t (tav), evaluates as 

 433.5176 10q qm r x kg m
c

�{   �
=

t  (1.38) 

 
Once again, in contrast to the direct relationship in the geometrization of mass in the 
classical application of general relativity, in quantum theory conventional mass is 
indirectly related to length.  If we consider a relativistic quantum qualitatively, we know 
that the deBroglie wavelength decreases as the relativistic mass, and the particles 
momentum, increases, indicating once again the inverse relationship of mass and length.   
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2 – Derivation of Newton’s Gravitational Law from Quantum and General 
Relativistic Principles 

 
We would like to derive Newton’s Gravitational Law from quantum principles, while in 
keeping with the principles of general relativity.  The quantum principle we are interested 
in is the fundamental principle of a fundamental discrete unit or quantity.  This means 
that we seek to express the gravitational force, F, of his law as a product of 1) the 
number, na, of some as yet unknown fundamental discrete units of mass, m0, in two 
aggregate bodies of mass, Ma,  2) the curvature of space, k, expressed as the inverse 
square of the massive bodies separation in numbers of some as yet unknown minimum 
unit of length, specifically of a reduced circumference, r0, and 3) a fundamental discrete 
unit or quantum differential of gravitational force, dG0, as 
 
  (2.1) 

1 2

2
1 2 0m m k M M rF n n n d� G

 
We state Newton’s Law, where GN is Newton’s gravitational constant, conventionally 
considered a free parameter, as  

 
1 2

1 2
1 22M M k N N

M MF G M M
R

  kG . (2.2) 

 
Assuming a 3-space that is isotropic with respect to a source mass, M1, here we have 
made use of the observation that the inverse square component of the distance of 
separation, R, of M1 and M2 is the reduced circumference of the spacetime around M1, 
making the inverse of the square of R the measure of the Gaussian curvature, k, at the 
location of M2, using  

 2
2

1k
R

N  . (2.3) 

It is also observed that with respect to a potential orbit of M2 about M1 this curvature and 
the inverse square component is equal to the square of the angular wave number, N, of 
that orbit.  
 
It is obvious that the left hand side of equation (2.2) represents a force.  Some reflection 
will tell us that if it is to be related to general relativity, the right hand side must represent 
the product of a 4-stress, T, and an area, $, or in keeping with the last paragraph, an 
inverse curvature.  Thus this equation is dimensionally equivalent to  
 1F T Tk � $  . (2.4) 
 
Some rearrangement gives us a scalar form  
  (2.5) 1k F T� 
where the curvature of spacetime given by the left term is related to the stress-energy 
density of the right by the inverse force.  This is thus related to the field equation of 
general relativity, customarily expressed in tensor form as 
 8 NG G TDE DES �  (2.6) 
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where the Einstein curvature tensor on the left is so related to the stress-energy tensor on 
the right by the geometrically based numerical coefficient and Newton’s gravitational 
constant, which we will see conceals a force differential. 
 
Analyzing GN dimensionally, we know it has the dimensions of distance, r, cubed divided 
by the product of a mass, m, and time, t, squared.  If it in fact conceals a force 
differential, extracting that force in the third term shows GN  to be the product of that 
force and the inverse square of a linear inertial density, O, as 

 
3 2

2
2 2 2N

r r mrG
mt m t

O�   dF  (2.7) 

The inertial densities, then convert the mass on the left side of Einstein’s field equation, 
in equation (2.6), of which there are two, one in Newton’s constant and one in the stress 
tensor, to the product of two distances.  This takes us half the way to equation (2.5), 
which has an inverse force on the right while the GN  in Einstein’s equation has a direct 
force.  Using the fundamental identity of space and time as shown in equation (0.7), we 
can make the following dimensional substitutions into equation (2.7),  

 � �
� �

33 2
1

2N

itr tG
mt m ir t mr

dF �    
�

 (2.8) 

which converts GN  to an inverse force and equation (2.6) assumes the dimensional form 
of equation (2.5). 
 
Expressed as a force, gravity is centrally directed toward the bodies of mass and within 
the context of a flat spacetime, assumed to be isotropic about each.  The curvature in such 
conditions is considered generally spherical, so that some rearrangement of equation (2.4) 
in the absence of any rotation of the two bodies about each other, results in an isotropic 
dimensional expression of tension stress, f3, where the subscript indicates the dimensional 
order of the stress 

 3
Ff Fk  
$

. (2.9) 

 
The stress in the case of general relativity is a 4-stress, however, so that we are looking 
for a formulation that makes explicit the general relationship  

 3
F

4f T T
A

{ {� . (2.10) 

Additionally, we are interested in the 4-stress associated with an accelerating expansion 
of space, so we take a closer look at the geometry of stress, specifically of isotropic 
expansion stress.  We examine the case of energy density - stress in an n-manifold that is 
expanding in response to its expanding n+1-core.  First, in Stress Diagram 1 we examine 
the differential area of a 2-sphere on a 3-ball, such as an expanding balloon. We imagine 
that the balloon is expanding due to a differential pressure normal to the balloon surface,  
so that there is a 3-stress (tension), dT3, orthogonal to the balloon’s surface, the 2-sphere.  
We look at a differential square on the surface of the balloon and see that the sum of the 
2-stress (transverse), df2, in the balloon surface at that locus should be equal to the 
orthogonal tension stress, or 
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 3 2dT df2J  (2.11) 
where J�2 is a geometric factor summing the transverse stress.   

 
  Stress Diagram 1      Stress Diagram 2 

It is the displacement of the vertices of the square that defines the change, so instead of a 
normal unit vector to each mid-edge of the differential square, we stipulate a ½ vector at 
each vertex, along with a ½ shear vector, giving a total of 8, 1 vectors at the four vertices.  
With a total of 4 resultants of the vector pairs at each vertex, we have  
 � �2 2

2 4 1 1 4 2J  �   (2.12) 

In terms of elasticity theory, this is equivalent to an extremely high, ideally infinite bulk 
modulus and a Poisson’s ratio of ½, and equation (2.11) becomes  
 3 4 2dT df 2

3

 (2.13) 
 
Extending this approach with analogous elasticity conditions to a 3-space on a 4-core, in 
Stress Diagram 2 we have a 4-stress, (which necessarily cannot be shown) normal to and 
equal to an isotropic 3-stress, as 
 4 3dT dfJ . (2.14) 
This time we consider a differential cube, and instead of the customary assignment of an 
orthonormal tension stress vector to the center of each of the faces of the cube, we assign 
a quarter of each normal vector to the corners of each face, thereby identifying them with 
the shear vectors of the two adjacent surfaces. This is equivalent to a Poisson’s ratio of 
1/3. The sum of these ¼ tension vectors and the two parallel ¼ shear vectors is a ¾ 
vector, so that there are 3, ¾ orthogonal stress vectors at each vertex.  The resultant of the 
three orthogonal components at each corner then, aligned with the cubic diagonal, is the 
total stress contributed to each of the 8 vertices by an isotropic stress, so that the 
geometric factor relating the stresses in equation (2.14) is 

 � � � � � �2 2 23 3 3
3 4 4 4

3 38 8
4

J § · � �   ¨ ¸
© ¹

6 3  (2.15) 

and equation (2.14) becomes 
 4 6 3dT df 3  (2.16) 
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Next we examine a scalar expression of the equation (2.10) in light of this adjustment, 
where we specify that $0 is a fundamental or quantum unit area, 

 1
3

0

FTJ �  
$

, (2.17) 

with the derivatives for an invariant T being 

 1
3 2

0 0

1 0T T FdT dF d dF d
F

J � w w
 � $  � $
w w$ $ $

 . (2.18) 

 
Separating and inverting this function we have the two following differential equations, 
the first of which is straight forward,  
 � �1 1

3 0 3 0dF dT dTJ J N� � � $ { 2  (2.19) 
and the second one expressing various parsings of interest, especially those in which the 
stress force is removed from the equation,  
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 (2.20) 

 
According to the above specifications a quantum formulation for Newton’s Law, as 
previously stated, would be  
 . (2.21) 

1 2

2
1 2 0m m k M M rF n n n d� 

 
An aggregate mass is the product of the number of quanta in that aggregate times the 
fundamental unit of mass or with rearrangement 

 
0

a
Ma

Mn
m

  (2.22) 

and the  reduced circumference of the separation of the two bodies of mass is the product 
of the number of unit lengths in that separation and the minimum or quantum unit length, 
or 

 
0

r
Rn
r

 . (2.23) 

 
Substituting equation (2.22) and equation (2.23) into equation (2.21) gives  
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Assuming that the gravitational quantum is equivalent to the formulation from equation 
(2.19) and substituting from its middle term, gives the following, in which the stress 
differential is normalized in its relationship to dG0 as dT0 = 1, 
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Apparently, the bracketed term is equal to Newton’s constant. 
 
In keeping with quantum principles, we state the relationship between the above 
postulated quantum mass, m0, and length, r0, the latter stated as the reduced Compton 
wavelength,  

 
0 0

1 1
0 ,

0
Cm r

c c
� �

r
   

t= =� . (2.26) 

The ratio, O0, then is the linear inertial density of the quantum fundamental as  

 0
0 2

0 0

m
r r

O   
t . (2.27) 

Here we restate t (tav), the inertial constant, an invariant of a quantum interaction, as the 
integral of the interaction time interval, tf  = tf – ti, times the impulse J, or  
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where the impulse is defined as 
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and  
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Note again the relationship of t to Maupertuis’ principle and definition of the action, S, as  
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Thus  

 
f f
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c x dZ
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= = =

x
 (2.32) 

 
We substitute from equation (2.26) into the bracketed term of equation (2.25), and get 
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10 0 0
0 32 2 2

0
N

dG r rG dG J
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�   
t t
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which in a natural system simply equals J3
-1. 

 
After some rearrangement, we have 
 � �1/ 62 1

0 3 0Nr G dTJ � t . (2.34) 
Since with respect to dG0, dT0 equals 1, and as we know the other invariants in the right 
hand term, we can solve for r0, and find that in the SI system it equals the reduced 
Compton wavelength of the neutron or  
  (2.35) 16

0 , 2.10019... 10n C nr �  � x m
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within the standard uncertainty for GN.  The “n” in the subscript “0n” is in some contexts 
redundant and simply emphasizes the neutron scale as the fundamental, quantum scale.  
All other values for the fundamental properties incorporate and can be computed from 
this value.  Therefore, the fundamental gravitational mass is the neutron mass or  
 . (2.36) 27

0 1.67492... 10nm m x kg�  
 
The gravitational quantum then is variously  
 , (2.37) 1 2 1 1 33

0 3 0 0 3 0 0 3 0 4.244... 10n ndG dT dT T d x NJ N J J� � � � �  $  $  
where the last algebraic term makes use of equation (2.20). 
 
Some rearrangement gives 

 0 0
0 3

0 0

ndGT
d d

J 0dT$
  

$ $
 (2.38) 

 
With this development, we can get the spin energy density-stress, T0, on the neutron, 
which we assume to be a quantum waveform, where E0n is the spin energy of the neutron 
and  
 2

0 0W Z t  (2.39) 
is the transverse wave force of the oscillation, 
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Substituting this into equation (2.37) for the gravitational quantum and rearranging, we 
get the following expression and value for the quantum or unit area differential, d$0, 
which we find is equal to the Planck area, 
  (2.41) 1

0 3 0 0 2.6116... 10Pld T dG xJ �$   $  
 
This analysis indicates that Newton’s gravitational constant contains a quantum 
differential, and that the neutron scale is the fundamental scale of an expanded spacetime.  
It also indicates a relationship to the Planck scale, and we would like to determine more 
of that relationship next. 
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3 – Analysis of the Relationship between the Neutron and the Planck Scale 
 
If we use the conventional geometrization factor from general relativity for mass, GN /c2, 
for the neutron we get a length measure of a hypothetical quantum black hole horizon as 

 54
2 1.243... 10N

hn l,n n
Gr m m x m
c

�   . (3.1) 

Comparing this with the neutron reduced Compton, we get the dimensionless number 
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Squaring equation (3.1) to get the inverse curvature of a hypothetical quantum inertial 
sink at that scale gives 
  (3.3) 2 1.545... 10hnr x � 108

which is related to the Planck area by the same ratio or 
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r x � 
$
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It bears noting that this is in the range of the factor separating the gravitational and the 
strong interactions. 
 
Using the structure for Newton’s constant developed above, we analyze the conventional 
geometrization factor, where we make use of the classical wave relationship,  
 2

0 0cW O  (3.5) 
in which W0 is the linear tension force and in this case the transverse wave force in a wave 
bearing medium, O0 is the linear inertial density of that medium and c is its speed of wave 
propagation.  We find that conversion factor is equal to the differential of the natural log 
of the expansion stress divided by the linear inertial density,   
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Using CODATA values for the neutron mass and reduced Compton to determine O0, we 
can solve for dlnT0 and get the factor in equations (3.2) and (3.4) 
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1 1 0
0 0 3 2ln 5.92146... 10n

n

rd T T dT dT x
m c
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Inverting and multiplying through by 0 1dT   gives the value of T0,  
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from which we can get the transverse quantum wave force of the neutron  
  (3.10) 1

0 3 0 0 7.1676... 10n nTW J � $  
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Assuming that the gravitational quantum is the differential of the quantum transverse 
wave force with respect to differential stress, � �TW c , we have the ratio of that differential 

and the wave force itself, , or equation (2.37) over equation (3.10) � �TW

 � �
� �

39
0

0 0

ln 5.92146... 10
n n

T d dGd T x
T

W W
W W W

�c
     (3.11) 

which is the ratio of the gravitational and the strong interactions. 
 
Rearranging equation (3.10) and taking the derivative of inverse curvature with respect to 
the isotropic stress results in an evaluation equal to the Planck area, 

 0
0 3 0 0 02

0

lnn
n Pld dT d

T
TWJ�  �$  . (3.12) $  �$

once again indicating that the Planck area represents a differential of expansion stress.   
To verify this statement, we substitute equations (2.39), (3.5), and (3.9) for the expansion 
force and stress into the second term here and find 
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From this analysis of the differential nature of the Planck area and the endnote 
comments,i which suggest expansion along a hyperbolic manifold, from equation (3.12)
we can show the Planck length as a differential value, as 
 

1
2 35

0 0 0 0ln 1.6161... 10n Pldr d r d T r x m� $    . (3.14) 
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4 – Cosmological Implications 
 
Basic to our discussion is the assumption that spacetime is expanding relative to our local 
frame of reference.  This means that over time a local fixed unit length standard becomes 
an ever decreasing proportion of some linear measure of the cosmic extent.  If we project 
backwards in time, we can assume that at some point that measure was potentially equal 
to the current local length standard or unity.   
 
The current concept of a big bang start of cosmic spacetime expansion implies an initial 
condition of maximum inertial density, possibly infinite, which decreases with the 
expansion of space from an extremely small volume, possibly zero, i.e. from a 
singularity.  This begs the question of what triggered the release of the attendant pent up 
stress such initial inertial density represents.  Instead of emergence from a singularity, the 
space component of spacetime can be modeled as a boundary on the next higher 
dimensional manifold itself under expansion, analogous to a circle drawn on the surface 
of an expanding balloon.  Alternately, we might imagine a spherical balloon of fixed size 
with a circular wave emanating from one spot, widening in diameter as it approaches an 
equator before shrinking again as it nears the antipode.  An analogous inertial spacetime 
oscillates on a cosmic scale between a maximum density and rarification, between a 
maximum compression and maximum extension.  The fact that the expansion appears to 
be accelerating indicates that the expansion rate is best understood exponentially. We can 
then take the condition of maximum density as unity instead of as a singularity, and 
gauge any expansion with respect to that unity for $0 and r0 as inversely related to the 
associated increase in stress T0 due to expansion according to equations (3.12) and (3.14).    
 
The current expansion factor, Nexp, then is the ratio of the current fundamental scale, the 
neutron scale, to the Planck length is equal to the inverse square root of the differential 
natural log of the expansion stress,  

 
1 190

exp 0
0

ln 1.29952... 10nr d T x
dr

N
�

    (4.1) 

As this expansion is at an exponential rate, in terms of doubling from an initial condition 
of maximum density equal to the linear inertial density of the neutron scale, O0, with time 
and space normalized, in terms of the whole or an arbitrary unit standard, cosmic 
expansion, Cx, is 
  (4.2) � � 18 11

expln 2 9.00764... 10  light seconds 2.8544... 10  light yearsxC x xN   

Note that the last term would indicate, if interpreted as a straight line increase at the 
speed of light, an expansion age of the cosmos of 285.44 billion years. 
 
An exponential expansion rate, Xe, derived in the full development of this model and 
shown to equate to a predicted Hubble rate of 72.791 km/mps/sec, shows the change in 
unit scale per second as  

 180
0

0

second 2.35896... 10  se
rX H x

r
�'

    (4.3) 

If we interpret this as a straight line expansion rate from an initial singularity, inverting 
would give the age of the cosmos in current units as 
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  (4.4) 1 13.433 billion yearseX �  
However, if the Hubble rate is exponential or compounding, the following gives the 
Hubble time, WH, as a time in current units for a doubling in spatial linear extent, or 
  (4.5) 1ln 2 9.311 billion yearsH eXW �  
The product of the expansion rate and the expansion factor is the number of doublings or 
  (4.6) exp 30.655... doublings 285.43 billion yearseX N   
 
Following this logic, if the wavelength of the cosmic microwave background is 
approximately 3.3mm and indicates an expansion along with spacetime from a primal 
epoch of beta decay as gauged by the electron Compton wavelength, dividing the natural 
log of such expansion by the natural log of 2 would give the number of doublings based 
on those parameters or 

 � �
9

1

,

.0033 ln1.360... 10ln ln 2 30.34... doublings 282.5 billion years
ln 2C e

x
O

�§ ·
   ¨ ¸¨ ¸

© ¹
 (4.7) 

in very close agreement with equation (4.6). 
 
This observation indicates that r0 remains stable as spacetime and the CMB expands and 
indicates that such quanta did not have a geometry of the Planck scale at an early epoch, 
which instead of starting from a singularity with all the physical dilemma that entails, 
started expansion from a maximum finite density.  The Planck length, then, is the ratio of 
the neutron reduced Compton and the cosmic extension from an initial compact condition 
of maximum density, and continues to decrease with expansion. 
 
Alternately, but not contradictory, if we think of the cosmic extent of 3-space as a fixed 
unit, what appears mathematically from a local perspective as expansion is from the 
universal perspective a process of regional and local concentration of inertial density.  
With respect to our analogy of the fixed balloon above, the linear (and area) density of 
the balloon in the absence of a wave is invariant over the surface of the sphere, but a 
wave moving over its surface creates a density differential at the wave front, increasing 
as it approaches a pole and antipole and decreasing as it approaches an equator.  From the 
reference frame of the traveling wave front approaching the poles, the stress related to the 
wave front,T0, increases and r0, as a related unit standard which in the case of the balloon 
we might give as the distance perpendicular to the given polar diameter, decreases over 
time.  The ratio of r0 with respect to the balloon’s extent, Bx, its radius at the equator, 
represents a decreasing differential length, dr0, and can be expressed as the cosine of the 
angle of declination of the wave front.   
 
The wave front in this analogy represents the current local quantum scale given by r0n.  If 
we were to rotate the balloon about the given polar axis at the same frequency as the 
wave’s movement over its face, each point in the wave front would mimic the action of 
our 3-D clock.  From either of the above perspectives, the energy per cosmic extent is 
invariant and cosmological red-shift is apparent, and in neither case is the Planck scale a 
fixed discrete scale.   
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Black Hole Metrics 
 
Assuming that the above and supportive analysis does indicate that the neutron is a 
quantum inertial sink, but not a quantum black “hole”, then a maximum linear inertial 
density is given by  

� 12
0

0

7.975... 10 /n

n

m x kg m
r

O �  � ������

This would seem quite small, but for its bulk implications.  For a volume density, we 
would figure the number of hypothetical fundamental rest mass quanta per volume of 
such quanta, tightly packed.  Using a packing system of one sphere with twelve 
contacting identical spheres, and disregarding any expansive effects of spin, charge, etc., 
we can compute the theoretical maximum density and find that it equals roughly 
 46 32.2549... 10  /  x quanta m  (4.9) 
 
Inverting the neutron mass gives the number of such quanta per kilogram or  
 265.9704... 10  /  x quanta kg  (4.10) 
for a maximum theoretical density of  
 19 33.7768... 10  /  x kg m  (4.11) 
or a density per sphere of one meter radius 
 201.5820... 10  /   sphere x kg meter sphereU   (4.12) 
 
From this we can find a threshold black hole mass, Mkg,TBH for an aggregation of quanta 
by using the following for a flat Euclidean space, where rMax is the reduced 
circumference of a celestial body of maximum density, 
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 (4.13) 

 
Assuming  as with an extreme Kerr spacetime hr M 
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for an extreme Kerr horizon gives 
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which using the above density gives us the evaluations in the following table or 
approximately two solar masses for the threshold.   
 
Here in column 3, from equation (4.13) we compute the rMax for various celestial bodies, 
Earth, Sun, Milky Way galactic BH and Virgo cluster BH, and include the theoretical 
threshold size black hole and the Universe, as listed in column 1.  “Flat Spacetime” does 
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not specify that the pertinent body has no curvature effect on the surrounding spacetime, 
but rather that the curvature of individual quanta, i.e. quantum gravity, is not effected by 
the aggregate mass and remains the same as for an individual quantum in isolation in flat 
spacetime, i.e. there is no assumed collapse of each quantum waveform toward a 
quantum singularity, though there may be a state similar to a Bose-Einstein condensate.  
The fourth column gives the reduced circumference at the horizon of an extreme, charge 
free, Kerr black hole according to the conventional interpretation of general relativity.  
The fifth column simply makes explicit whether the third column figure resides within 
the fourth.  This indicates that the rest mass quanta inside a black hole horizon could 
congregate at maximum density without precipitating a singularity. 
 
 Mass in kg Radius, rMax in m, 

Density =�USphere Flat 
Spacetime 

Mass in meters 
2
NG

l kgc hM M r   
Is r within Ml = 
rh at Horizon? 
 

Earth *  245.9742 10x 33.55 34.44 10x �  No 
Sun *  301.989 10x 32.325 10x 31.477 10x  No 
Kerr BH 
threshold 

303.930 10x  32.913 10x 32.913 10x  At Horizon 

Milky Way *  365.2 10x 53.20 10x 93.86 10x  Yes 
Virgo cluster *  396 10x 63.36 10x 124.45 10x  Yes 
Universe 531.67 10x   

8010 nucleon  

111.02 10x 261.24 10x   
913.1 10x light yrs 

Yes 

*Figues from Exploring Black Holes, by Taylor and Wheeler, Addison Wesley Longman, 2000 
Chart of Various Celestial Mass Geometrizations 

 
Of interest is the fact that the universe appears to be within its own horizon, which 
conventionally would tend to imply that its constituents should be contracting, and that 
there are black holes within black holes.  Also the mass in meters being equal to the 
reputed age of the universe times the speed of light seems a bit serendipitous unless of 
course that mass, i.e. the number of currently theorized nucleons, was estimated using the 
above geometrization equation.  But this figure is not the currently theorized (observed) 
extent of the universe, which is in the 150 billion light year range.  Finally it is noted that 
the hypothetical mass of the known universe at maximum density and a radius of 102 
million kilometers, would fit inside the earth’s solar orbit in flat spacetime.   
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5 – The Quantum Metric 
 
We turn now to the metric, specifically a chargeless extreme Kerr metric in the equatorial 
plane (the I coordinates are suppressed), in which the angular momentum parameter, a, is 
equal to the horizon reduced circumference and the geometrized mass, or .  
The timelike metric at the horizon is 

h la r M  

 
22 2

2 2 2 2
2 32
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21

l l l
h
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h h
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 (5.1) 

Substituting for  gives la M 
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 (5.2) 

We make the following observation concerning the  term.  While the conventional 
interpretation is that the term “blows up” as the denominator approaches zero, and any 
infalling test particle transits the horizon, the math can also be interpreted in terms of a 
limit for radial motion.  A mathematical slight-of-hand is at work in the formulation, 
since the differentials are deemed to approach zero in the limit, but are effectively treated 
as dimensional units equal to one.  This is necessary since the product of the co-efficients 
and zero would be zero, and is warranted since we find a similar differential on the left 
side of the equation.  It does not, however, address the situation if the metric component 
represented by the differential has a natural limit as does the radial component of a polar 
coordinate system.   

2dr

 
Thus if the horizon in an extreme Kerr spacetime represents a limit, dr equals zero at the 
limit of that horizon coincident with the term in the denominator, the coefficient and the 
differential cancel and the result is simply -1 as shown below.  The horizon, then, is 
effectively a physical asymptote.  Thus at the event horizon, where hr r Ml   this 
simplifies to  
  (5.3) � � � � � �22 2 2 24 2 2hd dt r dtd r d dr idt i r d idrW T T T � � � �  � �2 2

h

This can be factored as a complex number and its conjugate 
 � � � � � � � �2 2 2h hd idt i r d i idr idt i r d i idrW T T � � � �ª º ª¬ ¼ ¬ º¼  (5.4) 
or can be simplified as follows,  
 � � � �2 2 2h h hd idt i r d dr idt i r d dW T T � � � �ª º ª¬ ¼ ¬ hr º¼  (5.5) 

where  is the reduced circumference at the horizon and hr 0hdr   is a zero vector with 
respect to the radial, giving a proper time of 
 � �2 hd i dt r dW T r �  (5.6) 
 
If we assume that for bookkeeper time the differential is in the plane of the horizon, and 
time flows with the rotational motion of the ergosphere, so that 
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 hdt r dT  (5.7) 
then the proper time is found to flow orthogonally to that rotational motion, into the 
negative and positive I�coordinates, since 
 d idtW  B  (5.8) 
This will be significant in our statement of the quantum metric. 
 
From this perspective, at the static limit and the start of the ergosphere, where , 
pure radial motion is no longer possible, and a rotational component or frame dragging 
element is injected into the equation so that at the event horizon, all motion is rotational 
as indicated by the “imaginary” or orthogonal senses. Instead of gravitational collapse, 
this argues that any incremental matter or light accruing to the inertial sink is smeared out 
and bound at the horizon. 

2 lr M 

 
We now get to the meat of the matter with an expression of the quantum metric.  The 
dynamics of the quantum waveform is not extremely complicated, but it does involve 
some rather lengthy, non-standard analysis using methods of complex classical wave 
physics extended to 4 dimensions, and is beyond the scope of the present discussion.  We 
will simply state that its kinematics prevent the orientation entanglement condition.  
 
The timelike quantum metric is given as a modified chargeless extreme Kerr metric.  The 
modification is in the I coordinates as shown here, where the quantum mass has been 
explicitly geometrized,    
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The caveat stated earlier concerning the limit of radial motion represented by remains.  
In the last term, the complex exponential is defined as 

0nr
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Either the real or the imaginary part could of course be used.  The ccw term indicates 
rotation in the upper hemisphere according to the right hand rule, while the cw term 
indicates clockwise rotation in the bottom hemisphere according to the left hand rule, 
when viewed from the exterior of the corresponding rotational pole.   
 
The plus and minus curly brackets has the following definition and indicates a flipping of 
the sign of the dI��vector, with every S rotation of T, plus being parallel and minus being 
anti-parallel with respect to the spin axial vector.  It thus performs a function similar to a 
mathematical spin matrix.   

 ^ ` � �
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Obviously, T and I rotate at the same frequency, with the axis of the I�rotation rotating in 
the equatorial plane.  Such rotation at the horizon is at the speed of light in vacuo for each 
rotation.  This motion avoids the orientation entanglement condition as depicted in 
Gravitation by Misner, et al., and is necessitated by the assumed continuity condition of a 
classical spacetime continuum.  When analyzed it is apparent that the motion is that of a 
transverse wave traveling in tight orbit around the spin axis, its amplitudes inclined 
toward the poles, analogous to a gravitationally bound, electromagnetic wave, and in fact 
constitutes the magnetic field of the quantum.   
 
The following diagram is a cross-section through the spin axis and shows the relationship 
of the static limit, the ergosphere, and the horizon.  The ergosphere is the domain of the 
strong interaction.  The transverse or I differential is limited in its motion toward the spin 
poles to the point on the static limit where L = 1.   
 
The metric simplifies at the horizon as  
 � �^ `2 2 2 2 2 2

0 04 cosnd dt r dtd R d t L d 2W T T Z T I � � � �B  (5.12) 
 
 

 
    Quantum Inertial Sink Diagram 1 

 
From Quantum Inertial Sink Diagram 1 we have the following coefficient component for 
I along the meridians at the static limit 
 � � � �3 3 3 5 5 34 4

0 0 05 5 5 5 4 4 4 4cos cosn n nL r R r r rE �  � �  � 0nE  (5.13) 
Substituting this in equation (5.12) simplifies at the horizon along the equatorial plane of 
a fixed spin axis where cos 1E  , as  

 � � � �� �^ `22 2
0 0 02 cos 2nd idt i r d t r d2 2

nW T Z T � �B I  (5.14) 

The corresponding spacelike metrics is  
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 � � � �� �^ `22 2
0 0 02 cos 2nd idt i r d t r d2 2

nV T Z T � � r � I

2

 (5.15) 

giving the fundamental symmetry 
 2d dV W{ �  (5.16) 
and for the proper time and space, indicating the orthogonal nature of space and time, 
 d idV W{ . (5.17) 
 
This can be represented by the following anti-symmetric orthonormal matrix at r0,  

Direction of ortho normal vector dxi with respect to  
X Axis Y Axis Z Axis 

X = +1 0 +rdT sinr tdZ I�  
Y = +1 -rdT 0 cosr tdZ I�  
Z = +1 sinr tdZ I�  cosr tdZ I�  0 
X = -1 0 -rdT sinr tdZ I�  
Y = -1 +rdT 0 cosr tdZ I�  

V
ec

to
r d

x i 
or

ig
in

at
in

g 
at

 

Z = -1 sinr tdZ I�  cosr tdZ I�  0 
Quantum Anti-Symmetric Orthonormal Matrix at r0 

 
In the presence of an anti-parallel external magnetic field as shown in Quantum Inertial 
Spin Diagram 2, the quantum spin axis inclines toward the equatorial plane and precesses 
about its initial position.  The resulting coefficients of ½ isospin can be seen here.  Note 
also that the Heisenberg “observational” uncertainty is limited by the inverse curvature of 
the horizon to  
 2

0 0 0lr c m r c  = . (5.18) 
 

 
    Quantum Inertial Sink Diagram 2 
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Conclusion 
 

This analysis provides a physical, i.e. geometric, as well as mathematical, model of 
quantization, by way of a fundamental discrete oscillation/rotation, of a classical 
spacetime continuum that is a function of the exponential expansion of that spacetime.  
Quantum gravity arises naturally as the differential of that oscillatory transverse wave 
force with respect to expansion stress and the strong interaction as the operation of that 
wave force between two or more quanta within a shared force domain.  This quantum 
state is expressed as a modification of a chargeless extreme Kerr metric with an 
oscillation of the I coordinates imposed by continuity conditions which prevent 
coordinate entanglement.  It thereby constitutes a physical spinor, constituting the 
quantum magnetic field and the property of ½ spin and isospin in the presence of other 
quanta.  The ergosphere of this quantum metric is the domain of the strong interaction. 
Finally, it shows that from a universal bookkeeper reference frame, the fundamental 
quantum scale is the neutron scale, for which the Planck scale is the current differential. 
 
General relativity requires the following refinement in this model.  Spacetime acquires 
the property of inertial density as a potential energy density independent of any energy or 
rest mass quanta.  It has an exponential expansion rate that is coupled with a covariant 
speed of light.  It admits torsion on a quantum scale that prevents the orientation 
entanglement condition.  Finally, quark phenomenology is shown to be the property of 
the nodes and antinodes of the quantum waveform.   
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Post Script 
 
This model can also be developed and presented as the 3-D representation of a classical 
4-D oscillation.  So developed elsewhere, expansion acts as an EMF, both by mechanical 
analogy and actually, that drives the fundamental frequency.  The rest-mass quantum is 
thus a small simple harmonic oscillator, with a potential-kinetic, capacitive-inductive 
energy cycle, in a general inductive mode during expansion, of which ordinary matter is 
the result.  During universal contraction, a capacitive mode ensues, resulting in a 
predominance of anti-matter.   
 
Over a short period of time, expansion leads to a drop in mechanical impedance, resulting 
in a transmission of energy and power at any neutral or resonant quantum not in nuclear 
congregation.  The result is beta decay, which is tuned to the expansion rate for any 
isolated neutral quantum, and generates the electromagnetic interaction.  The rest-mass 
ratios between the neutron, electron and proton and the “missing” mass of beta decay 
arises naturally in this analysis.   
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Endnotes 
 
                                                 
i A derivative taken on a flat rectilinear area,  

� � � �2 2 22d r dr rd rdr dr
dr dr dr dr

$r $ �$ r �r $ r �
   

22d rdr drr $  r �

1k

 

gives a differential area of 
. 

Now consider a hyperbolic surface, specifically the derivative of the inverse curvature of a pseudosphere, 
which is of constant negative curvature, for simplicity  � , where ri is the interior radius and re is the 
exterior radius, and we have the function, where either re or ri, could be used as the variable 

� �1 1 1
er e e e i ek k r r r rr� � �  �  �

� �

 

 The curvature is conserved, therefore the differential is zero or 
 

� � � �1 0
er i i e e i e i e e i i edk r dr r dr rr rdr r dr drdr�  � � � � �  � �  

0 1i er r r   

e i i edr dr drdr

 

 
The senses of the radii and their differentials indicate a direction toward (+) or away from (-) the exterior of 
the pseudosphere.  Note that the differentials are of the same sense.  Thus the above equation indicates a 
change toward the mouth or rim of the pseudosphere, as ri is increasing and re is decreasing.  At the point 
of normalization, where ,  
we have 

�  �
1 1,i e i edr x dr x drdr� �  � ?  

1 1x x�

. 

Therefore and after a sense inversion we have the solution 

�   
5 1
4 2 1 618033. ...x  �   )

� �1 1 1x x�  
1

i
� ) e  )

� �

 
the well known coefficient of conservative evolution of a system. 
Note that the product � �  is conserved. 

At the point where r and r  ,  
we have, where the differential senses are explicit, 

� � � �� �i e e i i er dr r dr dr dr� � � �  � � �  

� �1
er
�k )  as and we can normalize the differentials at 

i e odr dr dr    
giving 

1i e

e i

dr dr
dr dr

  

2 2 2
0 0i edr dr dr d

 , 

therefore 
   $

� �1 2
0 0 1

er i e i ek r r drdr dr d� )  �  �  �  � $  �

. 
Then the invariant inverse curvature is equal to the square of normalized differentials 

. 

However, for any such conservative hyperbolic system of any invariant finite curvature, we can state the 
following,  

1  ,i i e edr r dr r� )  ) , 
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so that 
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and we have the following relationship between the inverse curvature function and its differential 
components 
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Finally, with some substitution, for the function and its derivative, as 
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� �
1 1

1 1 2 1 1 1
2 1 ln lne e

e e e e

r r
r r e e r e r e

e e

k k
k dk dr dr k d r k d r

r r

� �
� � � � � �

� �
�  �  � �)  �)

)
1

ir
k �

. 

The symmetrical condition for  is 
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. 
 

Since  
 

we have 
, 

and finally 
. 
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