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A Classical Complex 4-Wave Foundation of the Cosmic-Quantum Mechanism 

 
Mart Gibson 

 
Abstract 

 
A model of a fundamental ½ spin quantum, specifically the neutron, is developed as a 

simple harmonic oscillation of an expanding 3-space of variable inertial density and 
resonant frequency in an underlying 4-continuum.  The oscillation is shown to be an 

extreme Kerr quantum inertial sink, aka black hole, for which the quantum metric is 
given.  The uncertainty principle is examined in light thereof, as well as the 

inappropriateness of the factor  in converting mass measure in kilograms to 

measure in meters for an individual quantum.  The correct quantum conversion factor is 

developed as the inertial constant, , which multiplied by the inverse of the 

quantum mass in kilograms gives the correct mass in meters.  This shows the neutron 

mass to be a measure of curvature as the reduced circumference at its horizon, equal to its 

Compton wavelength over 2p.  Within the static limit, the ergosphere of the oscillation is 

shown to be the domain of the strong interaction.  Expansion provides a mechanical 
analogue of an EMF which drives the neutral quantum.  Absent inertial confinement, a 

differential decrease in inertial density creates a discontinuity, inducing a decrease in 
frequency to that of the proton, with transmission of the electron.  Quantum gravity arises 

as the derivative of the wave force with respect to the expansion tension stress, equal to 

the inverse curvature divided by a geometric factor of  and the Planck area as the 

derivative of the fundamental cross-sectional scale and inverse curvature with respect to a 

change in stress.  An exponential Hubble rate is coupled with the differential wave force 
and thereby beta decay.  The nature of matter and anti-matter as inductive and capacitive 

states, respectively, is a straightforward consequence of this analysis.  A quantum 
physical mechanism, with animation, modeling the above is developed along with the 

derivation of the inertial constant, t.  An orthogonal matrix of the wave symmetries, 

functions, invariants, and their couplings is examined, clearly showing the relationship of 
the electromagnetic and gravitational interactions in a unified field. 
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1 –  Background and Fundamentals 
 
Motivation 
 
Based on a presumed unity on some ontological level, an understanding of the 
fundamental phenomena that inform the physical world would appear to hinge on the 
ability to link the classical realm of large aggregates of matter and the quantum world of 
individual particle interactions.  It requires that we find an expression of the very large, 
gravity, as a quantum effect and of the very small, individual particles of mass and 
energy, as a cosmic effect.  Currently, the first of these attempts focuses on the Planck 
scale, held to comprise the fundamental, discrete units of space, time and mass, and the 
second, on the high energy conditions held to dominate at a point or locus of cosmic 
inception.  We will try a fresh approach which derives the phenomenology of quantum 
effects, including gravity, from the wave bearing ontology of a cosmic continuum, a 
spacetime which we will discuss briefly in qualitative terms.   
 
We would expect to find the unification of the large and the small amenable to 
mathematical expression in an equation uniting the basic invariants of each.  We might 
expect to find a solution to the following, in which the familiar energy-mass equation of 
relativity and energy-frequency equation of quantum mechanics are joined.  Thus, the 
inherent energy of a particle, E, equal to the mass, m, times the square of the speed of 
light, c2, is equated qualitatively with Planck’s quantum of action, , times the angular 
frequency of a particle, w.  To elucidate this procedure, we look for a constant that 
couples the two expressions and find a candidate in the inertial constant, t (tav), which 
will be subsequently derived, and which we introduce provisionally now as 

 . (1.1) 

There is nothing new in this coupling of h-bar and the speed of light, but it has, to this 
writer's knowledge, never been identified, by any name or symbol, as an invariant of 
significance in its own right.  We will subsequently see the wisdom in doing this. 
  
The presence of w is an indication that a quantum particle is some manner of oscillation, 
and since it appears to have a discrete value over some interval of time, we will assume 
that it is an instance of simple harmonic motion, i.e. that there are no harmonic overtones.  
It is further presumed that in the context of such periodic phenomena, as in the case of a 
traveling wave, the following equation for the wave velocity applies, in which k is the 
angular wave number, hereinafter simply referred to as “wave number”, and  is the 
change in the wave phase commensurate with a change in time, for w, or in space, for k, 
along the length of the wave propagation;  

  (1.2) 

 
This applies even if we envision the oscillation to be more or less fixed at a locus in 
space.  That is, if there is an actual motion on some scale associated with the oscillation 
and not just a periodic phenomena emanating from a point in space, if it is an actual 
standing wave of some sort, then it will have a wave number just as would a traveling 
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wave.  Assuming the following equivalence, yields the rest mass as the product of the 
inertial constant and the wave number, 
  (1.3) 

 . (1.4) 

Thus, on a quantum level, mass is a measure of the wave number of an oscillation. 
 
We will next assume that the wave nature of an individual particle is an indication of its 
basic structure and not simply a statistical artifact, i.e. that such particles are not points, 
but have some inherent size as exhibited by a wave amplitude and length; that the 
Compton wavelength over 2p, lambda-bar with a subscript C, , or reduced Compton 
wavelength, expresses such, and is the modulus, , of some manner of quantum complex 
wave, which we will investigate, and we might state  
 . (1.5) 
Finally, as the curvature, k, of a linear path is the inverse of the radius of the path at any 
point, we might expect the wave number to also be a measure of that curvature as  

 . (1.6) 

A review of the 2002 CODATA values for particle mass and  for the neutron, proton, 
electron, muon, and tau, confirm (1.1) and (1.4) and show that in all cases 

 . (1.7) 

Thus rest mass is a measure of the wave number of a particle and, for a  fundamental 
oscillation, of some element of spacetime curvature.  Specifically, for a two dimensional 
curvature, herein assumed to be isotropic, we might look for  in a fundamental. 
  
Assuming a physical meaning of this relationship as to the nature of an actual oscillation 
indicates that three dimensional space is a wave bearing continuum of inertial-elastic 
properties, from which the mass, m0, of a fundamental oscillation at resonant frequency, 
w0, is derived, where 

  (1.8) 

is an invariant of the system.  That is, a particle is a sustained, confined oscillation of a 
local volume strain of the medium, which derives its mass from the inertial properties of 
that medium as indicated by its oscillatory frequency and wave number.   
 
We will return to this derivation in a moment, but first we should provide some 
motivation from the large scale world for pursuing this line of reasoning.  In classical 
Newtonian dynamics, the strength or magnitude of gravitational attractive force, Fg, is 
directly proportional to the product of the mass, Ma, of two interacting bodies and 
inversely proportional to the square of the distance, d, separating their centers of mass 
times an empirically determined gravitational constant, GN.  This finds mathematical 
expression in Newton’s law of universal gravitational attraction generally stated as 
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  (1.9) 

We would like to find some natural derivation of GN , arising from a quantum 
geometrical analysis and independent of empirical determination.  Based on the 
observation that the greatest example of gravitational force, as found in an inertial sink, 
i.e. a black hole, appears to be a neutron star that has exceeded a certain critical mass, and 
that the neutron is the more massive of the two atomic nucleons, the other being the 
proton, we will forward the provisional postulate that this particle serves a principle role 
in the operation of gravity on the quantum scale.   
 
We will assume for a minute that (1.9) is operational at that scale, so that the maximum 
quantum gravitational force between two nucleon would be anticipated between two 
neutron of mass mn, in contact, which we will take to mean at a distance of separation of 
their centers of oscillation of twice their .  In this regards it is further provisionally 
assumed that, on a quantum level, the force attributed to gravity is a manifestation of the 
centripetal force associated with the spin angular momentum of the particle, , and its 
oscillatory transverse wave force, so that it is operating at a distance  (using spherical 
co-ordinates), from the “surface” of one to the center of the adjacent oscillation.  In 
keeping with general relativity, which treats gravity as a function of curvature, we state 
the curvature of such surface, assumed herein to be isotropic, as . Thus (1.9) becomes 

  (1.10) 

where the n in the suffixes is for neutron.  Referring to the CODATA source again, for all 
values on the right, we find that this evaluates to  

 . (1.11) 

within a factor of  

  (1.12) 

of the CODATA value of  divided by , which is within the relative standard 
uncertainty for GN at 0.00015.  A very close approximation to this factor will crop up 
again with respect to other constants, indicating that any measurement process that 
includes GN somewhere in its mix could involve this discrepancy.  The numerical co-
efficient will be derived in a moment.  The very close agreement of this number with the 
magnitude of the neutrons’s reduced Compton wavelength is not found if the same 
procedure is used for the proton, electron, muon, and tau.  This suggests a fundamental 
tie-in with the geometries, i.e. the curvature of the neutron.  It will be noted that while the 
magnitude of  (times ) is equal to , it evaluates in SI units of force or mdt-

2 as Newton, whereas  is in units of length squared, d2, or area.  This hints at the 
derivative nature of , which judging by the units involved is a change in force, dF, 
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per change in stress, dT, where stress is defined as a force operating on a cross-sectional 
or surface area of a volume, the sine of the angle of incidence of said force to the plane of 
said area varying anywhere from 0, in which the stress is a pure shear stress, to 1, in 
which the stress is a pure tension stress, with any combination possible between these 
two extremes.  Thus, with a little basic calculus, we have the scalar differential form 

  (1.13) 

The derivative form, with the dimensional units expressed in SI terms, is 

  (1.14) 

a in this case is a number, corresponding to the very small number in (1.11) and is, in 
mathematical terms, the tangent or slope of the curve, F = AT at the point (T,F), and if A 
is constant, it is the (linear) curve.  It bears acknowledging what is generally implicit, that 
while the derivative as stated in the second term of (1.14) is taken at the limit, where both 
dF and dT are exceedingly small, the quantity a is the number of units of force, in this 
case Newton, per one unit of Pascal or Newton per square meter.  Thus the derivative is 
always normalized or reduced to a unit value of the independent variable as the tangent in 
the following example is normalized as 

  (1.15) 

 then can be seen as a differential change in a stress force, and as a quantum of 
gravitational force, Gq as 
  (1.16) 
Newton’s equation can then be stated in a quantum form as the direct product of the 
number of quanta (primarily nucleon) in two bodies of mass and inversely to the square 
of the distance separating them in quantum units times the quantum of gravity as 

  (1.17) 

In the full development of this line of reasoning, it will be shown that the proton is simply 
the neutron which has transmitted a portion of its energy in a wave form that we know as 
the electron, with a similar analysis for the anti-proton and positron. The number of 
quanta then is the number of fundamental oscillators or nucleon in each body of mass.   
 
From (1.10) we can see that  

  (1.18) 

where lambda, (not to be confused with the Compton wavelength) is the linear inertial 
density of a wave bearing medium or  

  (1.19) 

 ,F T F AT dF AdT
A
= \ = =

( ) ( ) ( )2 2
2

2 2

2 2

1 unit of tension
1

/ /

/ /
n n gF d kg m s kg m sdF m

dT kg m s kg m sd
m m

a
a× × ×

= = = =
æ ö æ ö× ×
ç ÷ ç ÷
è ø è ø

3

3

86602 3
3 5 1

sin . ...tan
cos .

p

p

p
= = =

( )n n gF ×

( ) ( )2 1q n n gG F m pascal Newtona a×= = =

1 2
2
n

M M
g q
n nF G
n

=
r̂

2

2 2
0

r̂n q
N q

n

G
G G

m l
= =

0 r̂
n

n

m
l =



 5 

Substituting the following for aggregate mass, Ma and distance, d, (1.17) becomes (1.9), 

  (1.20) 

 , (1.21) 

 . (1.22) 

Therefore, the possibility of deriving Newton’s equation from first principles exists, if we 
can find some quantum mechanism responsible for the phenomenological fact that  

 . (1.23) 

 
We have a notational decision to make concerning (1.23), that is whether to express the 
gravitational quantum as a derivative or as a differential.  The magnitude will be 
unchanged in either case, however the units will differ. For use as a component in 
Newton’s constant, GN, it will be necessary to treat it as a differential, dGq, in order for 
the units to correspond to the Newtonian convention of treating gravity as a force.  Thus,  

  (1.24)  

and Newton, as convention has it, becomes 

  (1.25) 

 
For purposes of the development of this model and in keeping with the conventions of 
general relativity, we will find it best to treat it as a derivative, which expresses the 
quantum gravitational derivative as inverse curvature 

 . (1.26) 

As developed herein, we will find that the force differential is in fact a differential of 
transverse wave force, , and the stress differential is of spacetime expansion stress, 

, while the cross product of the moduli expressed as orthogonal tangent vectors gives 
the inverse curvature of spacetime at the surface of the fundamental quanta.  Thus,  

  (1.27) 

where a greater curvature is indicated by a smaller cross product, positive or spherical in 
this case.  We shall see that it also has a negative or hyperbolic counterpart.  In the 
following discussion of the metric, we will find it convenient at times to refer to 
curvature by its inverse, , instead of by its direct measure, . 
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The Quantum Metric 
 
With respect to the gravitational modeling of general relativity, the local curvature (at a 
point) of spacetime can be expressed by a metric which is itself a function of the energy 
density-stress, T, of the almost local (nearby) assemblage of matter-energy particle-
fields.  This energy density-stress describes how the local spacetime will curve while the 
description of the curvature, G, describes how any local quantum particle-fields will 
move within that spacetime.  Thus we have the field equation for general relativity,  
 . (1.28) 
Note the functional similarity of this form with (1.27). 
 
From G we can extract a 4 dimensional spacetime metric describing this motion in terms  
for time, t, or space, s, as the square of a vector.  For a flat locus of spacetime, for a 
differential timelike change we have, as a function of one dimension of time and three of 
space 
  (1.29) 
and for a differential spacelike change  
  (1.30) 
For an isotropic condition, the three space terms in brackets could be expressed as  

  (1.31) 
 
It is usual to express both timelike and spacelike versions as the square of units of 
differential length, where the square exponent indicates a squaring of the differential and 
not a second order differential.  Thus the dynamic description of the energy density-stress 
on the right of (1.28), which involves mass, must be converted to express mass as units of 
length as well.  This indicates that the local curvature as delineated by G is a property not 
simply of a spacetime, but rather of spacetimemass or, if you prefer, spacetimedensity. 
This is done by use of the following conversion factor,  

  (1.32) 

where , in units of length over mass, is a reasonable choice for representing mass 
as a length.  This can then be used in the Schwarzschild metric which describes the 
vicinity of a non-rotating black hole or gravitational sink, its horizon being the boundary 
from within which, if crossed by a quantum particle, there is no return.  While not 
conventionally recognized, we might surmise that within the horizon the gravitational 
field strength exceeds the electromagnetic and weak field strengths.  The metrics, in polar 
co-ordinates, where r is the reduced circumference, or circumference around the sink 
divided by 2p at a point in the vicinity of the sink, are  

  and (1.33) 
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 . (1.34) 

 
The squares root of the timelike and spacelike metrics are the proper time and distance as 
would be measured at the location of the point under observation and is invariant with 
respect to any other frame of reference.  The information on the right is the bookkeeper 
or global space and time components of the same event.    
 
The horizon is determined by the case in which , and indicates that at that point, 
the bookkeeper time, dt, stretches toward infinity, and the radial change of the second 
term, dr, comes to a stop.  The third term is in the plane of the horizon, where the 
curvature is given (the smaller the number, the greater the curvature) by  

  (1.35) 

Thus the reduced circumference, r, is a local measure of linear curvature, k, which is 
known as the quotient of the some standard rstd and r, by .  In this regards it is 
worth noting that the maximum curvature allowed according to a conventional 
interpretation of general relativity is given by the Planck area or  

  (1.36) 

where we note the use of the inertial constant from (1.1) in the next to the last term.  The 
square root of this parameter gives the Planck length or 
  (1.37) 
The mass in kilograms associated with such curvature according to the Schwarzschild 
metric, using (1.35) and (1.32), is then 

 . (1.38) 

 
We must mention one other type of metric, for a rotating black hole of neutral charge, 
which is the Kerr metric.  Since it involves angular momentum, it is not spherically 
symmetrical as the Schwarzschild metric and we use the co-ordinates for the equatorial 
plane of the system to simplify things.  Thus for the timelike metric 

  (1.39) 

where is the angular momentum parameter, and J is the angular momentum of 
the rotating black hole.  At the extremum, , so that , and (1.39) becomes  

  (1.40) 
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The solution at , while resulting in the vanishing of the dt2 term, as before, does 
not have the same effect for the radial term, and we might surmise that  the horizon is 
given by , resulting in the vanishing of the denominator for the radial term, dr2.  
The point at , then constitutes the static limit and the region between the two, 

, is termed the ergosphere, shown in Diagram 1 on page 14.  Particles 
within this domain, including light, are swept along in the direction of rotation.  The 
radial condition at the horizon indicates that it would take an infinite amount of radial 
change from a bookkeeper or global perspective for any differential radial change to have 
an effect on the metric.  We might interpret this as an indication that from within the 
horizon over any time duration nothing can emerge.  Hence a black hole is portrayed as a 
domain from which there is no escape; its horizon often as a portal to an infinite abyss.   
 
We might take a different tack however.  If it is understood that the horizon is a limit for 
dr which approaches zero as the denominator approaches zero, the terms in the 
coefficient cancel and we have for the radial term simply -1dr2, which when factored to 
give us the proper time results in an imaginary, i.e. an exclusively orthogonal or 
tangential component to the radial differential, or at the limit .  
 
At the horizon, for the condition , (1.40) becomes 

  (1.41) 

  (1.42) 

  (1.43) 
and by this somewhat circuitous logic, we see that the proper time is 
 . (1.44) 
 
As the radial differential vanishes, instead of a black hole masking a possible singularity 
as perhaps conventionally considered, we have an internal domain within this horizon 
that prevents all radial motion or penetration, but does not preclude rotation, (or we might  
surmise, a possible fourth dimensional component.)  All motion, including frame 
dragging, then is directed about the surface of the sphere as indicated by the imaginary 
sense, principally within the ergosphere.  Thus the ergosphere admits both transverse and 
radial strain of spacetime, (but none purely radial), the latter of which makes dr only 
appear to stretch toward infinity as it approaches the horizon where .   
 
The curvature at the limit, , can be seen as the gravitational limit, so that any 
incremental addition to the mass by incoming quanta simply augments .  
Accordingly, in light of the Kerr metric, analysis of the Planck length at (1.37) as before 
gives us a mass in kilograms, known as the Planck mass, of 

 . (1.45) 
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Since rPl is an instance of r0, or the reduced circumference at the horizon, which is itself a 
measure of both space and time or spacetime with respect to a certain critical mass, M0, 
then and although (1.32) might well apply to aggregates of mass quanta and energy, for 
the curvature of spacetime associated with individual quanta we might expect the term 
involving the inertial constant to apply from (1.7) and (1.45) for a conversion factor for 
quantum masskilograms to masslength where 
  (1.46) 
of  

  (1.47) 

With some transposition we see that the inertial constant converts quantum curvature of 
spacetimemass to quantum masskilograms, 

  (1.48) 

 
If we analyze the horizon for a fundamental quantum, specifically for the neutron as 
analyzed above in connection with a gravitational quantum, using the Kerr metric and the 
conventional conversion factor (1.32), we get a reduced circumference of  

  (1.49) 

and a curvature indicated by 
 . (1.50) 
(1.49) is smaller than the Compton wavelength over 2p, and (1.50), smaller than the 
Planck area, both by a factor of .  If the Planck scale does represent some 
absolute scale limit and therefore curvature limit, it is apparent that the neutron does not 
represent a candidate for a quantum inertial sink.  We might look for some significance in 
this factor, and return to (1.24) for use in an analysis of (1.32) in determining a length 
measure of mass.  Using that gravitational quantum differential and the therein derived 
form of Newton’s constant, GN, of (1.25) 

  (1.51) 

we can state 

  (1.52) 

We posit that the Compton wavelength over 2p is the reduced circumference of the 
neutron at its “surface” or horizon, , for use in the following metrics, and that  is a 
measure of the (inverse) curvature at that locus.  The term in brackets in the third and 
fourth parsing is, as we shall see, the inverse isotropic expansion stress, where  is a 
presumed fundamental linear inertial density of spacetime and  is the corresponding 
fundamental quantum transverse wave force, according to the classical wave relationship 
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 . (1.53) 
(1.52) then can be stated as 

  (1.54) 

Here the differential of the natural log of the expansion stress is a dimensionless number, 
equal in the SI system to the following, as determined by the CODATA values of the 
neutron mass, neutron Compton wavelength over 2p, and the speed of light,  

  (1.55) 

and the units and magnitude of (1.54) are as found in (1.32).  In a natural system in which 
the unit length scale is gauged to , and in which the inertial constant, , as well as 

 and c themselves are all set to one and a unit of time is equal to a unit of length, the 
differential of the natural log of the stress as well as the stress itself is equal to one, while 
the log itself vanishes. 
 
If we examine (1.32) then as a logarithmic function of the change in isotropic expansion 
stress, we have, in SI, where  is the characteristic mechanical 
impedance of spacetime, not the same as the CODATA impedance of the vacuum, 

  (1.56) 

Thus as isotropic expansion stress increases,  decreases, so that the inertial density 
must decrease proportionally for the left term of (1.54) to remain constant.  But we might 
anticipate this local change if energy, i.e. inertial density per universal volume, is to be 
conserved as the universal volume increases.  Our model here is of a spacetime which has 
an inherent universal inertial density irrespective of the presence of quanta, rest mass or 
otherwise, i.e. a spacetimemass.  This requires an adjustment of perspective from the 
conventional modeling, as there is no true physical void or vacuum in this model. 
 
Since established models do not appear to incorporate the existence and therefore the 
significance of , at least in the form found herein, which evaluates to 

, it is understandable why the gap between the gravitational and other 
interactions appears so intractable.  It also states that the value of a quantum mass 
expressed in terms of length is undervalued by that same magnitude.   
 
Now, when we apply (1.32) using the modification of (1.56) to determine the spacetime 
curvature at the periphery of a neutron for use in the Kerr metric, we have,  

 . (1.57) 

It is significant here, that while aggregates of rest mass quanta can be effectively 
represented by units of length directly proportional to the aggregate mass, for individual 
quanta, as judged by the ratios of rest mass and Compton wavelength for various 
particles, mass is inversely proportional to length in keeping with (1.7). The reduced 
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circumference per quantum is inversely proportional to mass, but then again that is what 
spacetime curvature tells us, since a flat spacetime in the absence of quanta has an 
“infinite” radius. 
 
At the point at which two neutron are in contact as judged by , using one as the 
center of mass and the other as the test particle, the extreme Kerr metric in timelike form, 
suppressing one dimension, is 

  (1.58) 

  (1.59) 
and for the proper time, 
 . (1.60) 
 
As with (1.40)-(1.44),  at the horizon vanishes, in this case expressing the stationary 
or “rest” nature of rest mass quanta.  Per below, proper and bookkeeper time have the 
same magnitude at the horizon, indicating a property of universal cosmic bookkeeper 
time (but not external to spacetime and not necessarily of constant unit value).  They are 
obviously orthogonal in some manner as indicated by the imaginary sense, and we might 
consider the possibility of the condition in which time is simply a measure of the 
transverse motion or 
  or (1.61) 
  so that  (1.62) 
  (1.63) 
 
which applies at the horizon.  We can think of the proper time as registered in the 
(curved) plane of that surface, and  as being fourth dimensional or normal to the 
horizon and hence in the direction of isotropic expansion.   
 
If  is in the plane or surface of the static limit, in the equatorial plane, and we 
suppose that 
 , then (1.64) 
  (1.65) 
and proper time effectively stops as with a lightlike vector.  This suggests that the static 
limit of a rest quantum is a circulating light wave.     
 
The curvature at the horizon is indicated by 
  (1.66) 
 
If we contrast this with the quantum gravitational differential, itself an expression of 
fundamental curvature, we have 

,r̂n C n= !

2 32
2 22 2 2

2

ˆ ˆ ˆ2 r 4 r 2 rˆ ˆ1 r r
ˆ ˆ ˆr r rr̂

1
r̂

n n n
n n

n n nn

n

drd dt dtd dt q q
æ öæ ö

= - + - -ç + + ÷ç ÷ ç ÷æ öè ø è ø-ç ÷
è ø

22 2 2ˆ ˆ4 r 4 rn nd dt dtd dt q q= - + -

( )ˆ2 rnd i dt dt q= ± -

2dr

r̂ndt dq=
ˆ2 rndt d dtq- = -
d idtt = !

idt

ˆ2 rn dq

ˆ2 rndt dq=

( )ˆ2 r 0nd i dt dt q= ± - =

22 32 2
0 r̂ 4.4108 10nr x m-= =



 12 

 . (1.67) 

The isotropic expansion stress, a 4-stress, is orthogonal to all three ortho-normal 
components of a 3-space, and can be modeled as constrained to the four cubic diagonals 
at an angle of 0.615479 to the cubic edge and 0.955316 to the cubic surface normal 
vector.   is the sine of 0.615479 and the cosine of 0.955316.  Each ortho-normal 
component of this stress in that 3-space is 1/6 of the total 4-stress. Combined, these 
factors give us the coefficient on the right. 
 
We can see this gravitational, i.e. geometric, condition of the static limit as an operation 
of the strong force.  For two neutron in contact, the center of mass of each sits ideally on 
the others static limit.  The center of a proton, with slightly larger Compton, would sit 
right outside the limit, while an electron would be removed by a factor of almost 2,000.   
 
Assuming that the above and supportive analysis does indicate a quantum inertial sink, 
and that the neutron is such, then a maximum linear inertial density is given by the 
inverse of (1.56).  This would seem quite small, but for its bulk implications.  For a 
volume density, we would figure the number of hypothetical fundamental rest mass 
quanta per volume of such quanta, tightly packed.  Using a system of one sphere with 
twelve contacting identical spheres, and disregarding any expansive dynamic effects of 
spin, charge, etc., we can compute the density and find that it equals roughly 

, while inverting the neutron mass gives the number of such 
quanta per kilogram or , or a maximum theoretical density of 

 or , where  is the volume 
density in kilograms for a sphere with a radius of 1 meter.   
 
From this we can find a threshold inertial sink size for an aggregation of quanta by using 
the following for a flat Euclidean space, 

  (1.68) 

 
Assuming  as with (1.32) 

  (1.69) 

for an extreme Kerr spacetime horizon gives 

  (1.70) 

which using the above density gives us the evaluations in the following table or 
approximately two solar masses for the threshold.   
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Here in column 3, from (1.68) we compute the radius for various celestial bodies, Earth, 
Sun, Milky Way galactic BH and Virgo cluster BH, and include the theoretical threshold 
size black hole and the Universe, as listed in column 1.  “Flat Spacetime” does not 
specify that the pertinent body has no curvature effect on the surrounding spacetime, but 
rather that the curvature of individual quanta, i.e. quantum gravity, is not effected by the 
aggregate mass and remains the same as for an individual quantum in isolation in flat 
spacetime, i.e. there is no assumed collapse of the quantum waveform toward a 
singularity.  The fourth column gives the reduced circumference at the horizon of an 
extreme, charge free, Kerr black hole according to the conventional interpretation of 
general relativity.  The fifth column simply makes explicit whether the third column 
figure resides within the fourth.  This indicates the possibility that the rest mass quanta 
inside a black hole horizon could congregate at maximum density without precipitating a 
singularity. 
 
 Mass in kg Radius, r in m, 

Density = rSphere 
Flat Spacetime 

Mass in meters 
 

Is r within Ml = r0 at 
Horizon? 

 
Earth    No 
Sun    No 
Kerr BH 
threshhold 

   At Horizon 

Milky Way    Yes 
Virgo cluster    Yes 
Universe  

 
  

light yrs 
Yes 

 
Of interest is the fact that the universe appears to be within its own horizon, which 
conventionally would tend to imply that its constituents should be contracting, and that 
there are black holes within black holes.  Also the mass in meters being equal to the 
reputed age of the universe times the speed of light seems a bit serendipitous unless of 
course that mass, i.e. the number of currently theorized nucleons, was estimated using the 
above masslength equation.  But this figure is not the currently theorized (observed) extent 
of the universe, which is in the 150 billion light year range.  Finally it is noted the the 
hypothetical mass of the known universe at maximum density and a radius of 102 million 
kilometers, would fit inside the earth’s orbit in flat spacetime.   
 
Returning to the Kerr metric as the basis for a metric for a quantum inertial sink, what is 
left out in this metric is the remaining parameter, f, which covers the conditions over the 
surface of the horizon other than the equator.  The following Cartesian ortho-normal 
matrix is taken from Section 2, subsection Isotropic Expansion and the Generation of 
Rotational Oscillation in the development which follows, where the trace components 
vanish as , and where ,  
 

2 0
NG

l kgc
M M r= =

245.9742 10x 33.55 34.44 10x -

301.989 10x 32.325 10x 31.477 10x
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396 10x 63.36 10x 124.45 10x

531.67 10x =
8010 nucleon
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 (1.71) 

 
With respect to the uncertainty principle, for a given spin axis, , and equatorial plane, 
as indicated by the  components, indicating the quantum orientation, without a 
determination of q, we can not state of the transverse wave momentum at the 

 components.  If we could determine the momentum vectors from all the 
above components at a moment in time, we still could not determine the spin (tangential 
and therefore axial) vectors of , which could be pointed toward +x3 or – x1. 
 

 
Quantum Inertial Sink Diagram 1 

 
Based on the above diagram, we might state our quantum inertial sink metric, solved for 
the horizon, where , , the normal distance from the spin 
axis to the static limit, and , the tangent reduced circumference, C, at any 
point along a constant meridian of the static limit projected on to the tangent plane of the 
static limit, and  represents one of eight orthogonal, azimuthal clocks located along 
the meridians at  and  for  
and at  and  for , all 
viewed from outside the sphere.   
 
Per the right hand rule for angular momentum, clocks in the “northern” hemisphere turn 
counterclockwise, while those in the southern turn clockwise.  The sense of the trig 
functions indicates parallel (+) and anti-parallel (-) with respect to the angular momentum 
vector or north.  At , the oscillation is binary digital and therefore has no chirality, 
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though its intensity is sinusoidal, while at , the four functions merge through 
parallel transport along their respective meridians and are senseless with respect to north 
and south.  As a result, the trig function could also be written   

  (1.72) 

where 

  (1.73) 

 
The metric at the quantum horizon and static limit with respect to the equatorial plane of 
its spin angular momentum axis then is 

  (1.74) 

  (1.75) 
 
Of interest is the fact that  
  (1.76) 
Thus for a fixed spin axis from the equatorial plane, (1.75) becomes the following 
quantum timelike metric for the condition  

  (1.77) 

and we might imagine the spacelike metric to be 
  (1.78) 

so that on this fundamental level an essential symmetry exists as 
  (1.79) 
and for the proper time and space, indicating that time is orthogonal to any measure of 
space,  
 . (1.80) 
 
The condition at  gives angles of  at both 
poles.  This value of g  is pivotal as the angle of cubic center-to-vertex diagonal to the 
diagonal across a cubic surface, and thereby to isotropic stress.  The value of b appears to 
be the path integral over one quadrant or one fourth cycle of the figure eight shown later 
at Spin Diagram 1 – Spin Energy Cycle on page 56.  As  equals the horizon’s 
reduced circumference, its value squared equals the horizon inverse curvature, 
representing an effective limit to the approach of the static limit toward the horizon.  It is 
also the sinusoidal limit of the azimuthal clocks, which will be cotemporaneous at the 
ring  where .   
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The metrics indicate that the time, t, and spin position, given by q, are inextricably 
coupled in the rotation of the quantum and therefore the frequency, while their coupling 
in the coefficient of  maintains that same frequency in the meridian 
differential about a second axis, , orthogonal to and rotating about .  
Thus the system evidences an instance of double rotation which avoids the entanglement 
condition, where the  components rotate through , while the F components 
oscillate through , via .   
 
The metrics further indicate that the static limit, in the global or bookkeeper frame of 
reference, does not appear to arc along the meridian to the angular momentum pole at the 
horizon as in the diagram, but rather appears to have a uniform reduced circumference 
about a spherical shell.  Continuity is maintained through the spin axis, i.e. the azimuthal 
clocks merge via parallel transport.  From the global perspective for both q and f, 
however, the proper distance and time are modified by a factor of ½ from a modulus of 

.  As a result, with respect to q and f, the static limit is deemed to be equal to the 
horizon at , and the path integral of the F components,  
appears a figure 8 as in Spin Diagram 1.  The value of the path integral is invariant as 
given by  
  (1.81) 

From the global perspective, the halving of the moduli of q and f effectively collapses 
the quantum horizon to a singularity, though it is a false singularity, as it is the static 
limit, via the metric, that reduces to the horizon.  As  is the limit of radial change, and 

 the curvature limit, this also establishes the angular momentum limit, shown first in 
length then SI units  

  (1.82) 

giving us another basis for the uncertainty principle.  In light of the above this limit also 
shows the geometric basis of gravity as curvature as with (1.27), reiterated here, 

  (1.83) 

where k is a unit vector normal to the horizon tangent plane.  The cross product can be of 
negative sense and indicate negative curvature, which in conjunction with the complex 
axes of the inversphere as indicated in the following development, and associated with 
the value of g above, suggests a wave node to a 4-D, hyperbolic component.   
 
The quantum metric of (1.75) has observational problems that manifests as the 
uncertainty principle, as well.  Any test particle approaching the static limit has its own 
quantum metric and quantum gravitational and magnetic fields that interact with the 
initial quantum as it comes within its vicinity.  In keeping with the development herein, 
all rest mass quanta have a magnetic induction torque, Lµ, at an angle of 0.955316 anti-
parallel to the spin angular momentum vector.  In the presence of an external magnetic 
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field, B, the torque vector tends to align parallel with the field.  This alignment cants the 
spin vector toward the same angle with respect to the initial position as shown in the 
following Quantum Inertial Sink Diagram 2.   
 
Associated with the torque and orthogonal to it is a pair of magnetic power moments, 

, arising from the wave characteristics of the quantum oscillation.  These power 
moments are an expression of the wave restorative action as it returns from a point of 
maximum amplitude toward its equilibrium strain position in the equatorial plane of 
Quantum Inertial Sink Diagram 1, while simultaneously twisting about the spin axis.  It is 
this pair of power moments that produce the inductive torque, Lµ.  If the external 
magnetic field, produced by a quantum or aggregate source, is of sufficient strength,  
will be pulled into the equatorial plane and the spin, SL, and, in the case of the neutron, 
anti-parallel effective magnetic moment, µ, will align as shown here, and precess about 
Lµ.  The projection of  into the plane of SL/µ - Lµ is as shown in the polar axis view, 
and contributes the characteristic coefficients of ½ spin to rest mass particles.  As the 
approach of a test particle-field or an applied external field will always tend to align Lµ as 
shown, the spin vector, whose poles are the loci of wave amplitude, will respond 
accordingly, creating the phenomena of isotropic spin.  Thus the application of the 
quantum metric is limited by this aspect of particle interaction. 
 

 
Quantum Inertial Sink Diagram 2 

Although there may be epistemological limits on the application of a quantum metric, in 
principle this analysis shows a fundamental quantum, the neutron, to be an inertial sink, 
whose curvature and static limit, ostensibly a physical expression of confined rotational 
oscillation, is responsible for both quantum gravity and the strong interaction, and 
through multiples of such quanta in celestial aggregations, for larger scale curvature of 
spacetime, or as we have attempted to show, curvature of spacetimemass or 
spacetimedensity.  The cosmological implications of this analysis, in particular with 
respect to the significance of the Planck scale, will be taken up in the final section. 
 

M±

M±

M±
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Wave Bearing Continuum 
 
Above we stated that the oscillatory nature of quantum particles indicates that three 
dimensional space is a wave bearing continuum of inertial-elastic properties, and should 
next provide some justification for that statement.  Regardless of whether space, absent 
any oscillation, is defined as a void or, along with time, as part of a kinematic stage or 
protean backdrop of a four dimensional spacetime as in general relativity, it is generally 
recognized as permitting the translation of electromagnetic oscillations.  While these 
oscillations are variously modeled as photons, radiation or rays, energy, messenger 
particles, and self propagating electromagnetic or EM waves, they are all viewed as 
traveling through space, hence in some manner space is allowing or permitting the 
penetration of such oscillations; therefore, it transfers stress, and we might surmise, 
strain.  In terms of the EM wave model, they are recognized as transverse waves in which 
the electric fields, E, vary sinusoidally in phase with, hence at the same frequency as and 
orthogonally to the magnetic fields, B, clockwise when viewed from the direction of 
wave travel. Thus the cross product of E into B gives 
  (1.84) 
Various properties of EM wave propagation are shown here. 

 
    Figure 1 - Electro Magnetic Wave  

It is established that for an induced electric field, using Faraday’s law of induction, the 
change in the electric field over space is related to the change in the magnetic field over 
time by the scalar equation 

 . (1.85) 

direction of wave travelE B´ Þ

E B i B
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Similarly, for an induced magnetic field, using Maxwell’s law of induction, the change in 
the magnetic field over space is related to the change in the electric field over time by 

  (1.86) 

We can shed some light on this condition and on the nature of the fundamental ½ spin 
particles by using the orthogonal sense of the bracketed terms to develop a vector form of 
these equations.  While vector division is not normally defined, if we stipulate an 
orthogonal condition, as in the above wave, we can define vector division between 
orthogonal vectors, which by virtue of a ½ p rotation indicated by can become parallel 
or anti-parallel vectors.  In fact we will find that the operation of the cross product is 
equivalent to division involving a vector with imaginary sense in either the dividend or 
the divisor.  This is done not to confer any notational advantage, but to indicate the 
underlying rotational symmetry of the system.  Thus, for the right hand rule, we can state 
 . (1.87) 
The right hand rule reverse, which is equivalent to a left hand rule is  
 . (1.88) 
indicating that the right hand rule is equal to the left hand rule reverse.   
 
With some rearrangement of (1.85) and (1.86) we have 

 and (1.89) 

 . (1.90) 

 
We might write this in vector terms as follows shortly, with the understanding that the i 
represents a counterclockwise rotation of  in the plane of E-B, when viewed from the 
direction of wave travel, and c is a scaling or normalizing factor equal in magnitude to 
the speed of wave travel.  In other words, if the unit of distance x was equal to the unit of 
time t, c would equal 1.  Thus, given the right hand rule, from 
  (1.91) 
we have 

  (1.92) 

indicating the inherent orthogonality between x and t. t can be modeled as a vector 
anywhere in the plane, t, orthogonal to x, so that it represents a rotation of t into x or a 
collapse of the t plane onto x.  This appears to indicate that time and space are 
commutative, in the sense that they are interchangeable if we can think of time as 
constituting an orthogonal plane about a given spatial dimension, x.  This extends to the 
left hand rule as well as  

  (1.93) 

The direction of c is therefore determined by the direction of , which is logical, and 
not by  which is orthogonal to all of 3-space.  The inversion symmetries are 
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  and (1.94) 

  (1.95) 

In (1.92) to (1.95), we have a fixed orthogonal relationship between , , and c, 
which we might call a native right hand relationship as given by the first crossed term in 
(1.92), even though we have a symmetry of right and left hand cross products.  Note that 
there is no .  With a native left hand relationship,  and  are transposed, as 
found in the Left Hand Rules section with the magnetic fields in the EM wave diagram 
above, and we have 
  (1.96) 

  (1.97) 

  (1.98) 

  (1.99) 

  (1.100) 

In both the left and right hand native relationships, a positive c results from a rotation of 
one vector parallel into the other, while the negative c results from a rotation of that 
vector anti-parallel into the other.  Notice that an i in both the dividend and the divisor is 
not defined as a cross product, though it might be depending on the context.  The sense of 
the imaginary designation, then indicates by convention whether the crossing is to the 
left, clockwise, or to the right, counterclockwise, and its position shows it as an operator 
crossing the following vector into the other component of the quotient.  Thus we have the 
following identity that is tacit in (1.91) through (1.100), 

  (1.101) 

 
With this in mind, returning to (1.89) we can state with reference to the diagram, 

 . (1.102) 

for the transverse wave speed and direction as well as the longitudinal phase speed and 
direction.  A similar identity holds for (1.90), if we multiply through by -1, as 

  (1.103) 

This follows the left hand rule, as indicated by the fact that the translational sense of c in 
(1.103) is unaffected by the rotational sense change as in comparing (1.97) and (1.92).  In 
right hand form this is 

  (1.104) 
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which is simply the inverse of (1.102).  In more familiar form, using the right hand rule in 
the cross, both (1.102) and (1.104) are  
  (1.105) 
and we can see that by virtue of (1.92) and (1.98) that crossing involving time is 
commutative. 
 
Clearly in Maxwell the product of the permeability, µ0, and the permittivity, e0, constants 
as c2 inverts the time and space differentials and relates a change in the electric fields to a 
change in space and a change in the magnetic fields to a change in time, precisely as in 
Faraday.  It further shows, in keeping with (1.92), that  

  (1.106) 

as a scalar, where the second term is a parallel dot product and the third is an anti-parallel 
dot product, this latter case only if  and  represent the same vectors in each 
quotient.  If they do not as in the crossing diagrams representing the transverse wave 
speed in the EM wave diagram above, we would have 

  (1.107) 

 
The use of identities indicates that as normalized vectors, where the time and distance 
scale are equal, , are interchangeable as are .   Thus  
 and (1.108) 
 . (1.109) 
 
Also equivalent, applying the RHR to the magnetic field vectos are  and 

 so that  
  and (1.110) 
 . (1.111) 
 
This would be so much nonsense, with every vector shown as an orthogonal identity with 
every other, were it not for the fact that what is being elucidated is the simple orthogonal 
geometry of spacetime itself, and particularly of time with respect to all of 3-space.  If we 
rotate the EM wave in the diagram ¼ p clockwise about the direction of travel, c, the 
amplitudes of E and B can be viewed as the real and imaginary amplitudes corresponding 
to a complex modulus, , which represents the amplitude of a sinusoidal 
traveling wave with a transverse displacement in the R-c plane.  The wave, then, is 
analogous to a traveling wave on an ideal stretched string, but instead of a displacement 
of a medium of finite and much smaller cross-section relative to the amplitude, we have a 
sinusoidal strain in a medium in which continuity extends the cross-section indefinitely, 
far exceeding the magnitude of the amplitude. The handedness of the wave would appear 
to be a function of the matter particles and fields that interact with the wave and not of 
the wave itself. 
 
This condition is shown in the above diagram of the EM wave.  The E, right hand rules 
group of three cross products at the top of the diagram shows the differential vectors 
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which apply at the end of the positive electric field vector shown in the second quadrant 
phase, between ½ p and p.  If we had used a vector between 0 and ½ p, these three would 
be rotated one p turn about the blue vectors, c and .  The differentials reverse 
direction at the antinodes at ½ p and 1½ p, instantaneously vanishing, and reach their 
maximum, indicated by 1, at the nodes.  The cross product at the top and the one at four 
o’clock from it are identical, but the situation would be unchanged if we exchanged the 

and  in the second one in keeping with (1.92) and (1.98).  The third product, 
directly beneath the first, has been rotated so that c is shown as the transverse wave 
velocity vector.  Thus we have two directions of wave speed, transverse for the physical 
motion, and longitudinal for the wave phase as shown by the blue cs.  An analogous 
situation is shown for the magnetic fields at B, left hand rules.   
 
Recognizing that a four minute/mile and ¼ mile/minute represents the same velocity, 

  (1.112) 

  (1.113) 
 
  (1.114) 
 
depending on whether the squaring indicates an orthogonal condition, i.e. a cross product, 
as when taking the product of two sides of a square, or a dot product, in which case the 
product is, conventionally, no longer a vector.  We can make it a vector once more by 
applying the gradient, so that  
  (1.115) 
Actually, implicit in (1.113) is that the cross product is as in (1.107) and therefore we 
have, 
  (1.116) 
where the k indicates that the product, c, is orthogonal to both of the other two c’s.  
Alternatively we can express this as 
  (1.117) 
giving the second c in the cross product its own orthogonal sense, or we could use 
subscripts 
 . (1.118) 
In the case of the dot product, then, we simply have 
  (1.119) 
and the gradient becomes 
 . (1.120) 
In the case of a normalized c, (or c), t is simply another instance of xi, where  
  (1.121) 
and any two orthogonal x are interchangeable, and we can go with the established 
convention and call t, x0, or 
  (1.122) 
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In the second of these scenarios, we placed the time dimension at the end of the sequence 
or shifted the subscripts to the left, depending on your perspective, showing that time and 
space really are interchangeable.  A velocity or any other kinematic derivative is simply 
the rate of change in one dimension with respect to a change in another.  In the above 
treatment, i, by itself and without the other subscripts, is considered a generic orthogonal 
sense or operator, independent of any formal complex notation.  It is simply directed at 
an angle of p/2 with respect to the other term in a binary operation.  If it is constrained in a 
plane, then it itself can be either + or -, conventionally counterclockwise or clockwise, as 
directly viewed, the mirror image or “view from behind” being reversed.  (This indicates 
that in addition to an intrinsic degree of freedom, + p/2 or  - p/2, and an extrinsic infinitely 
variable degree of freedom determined by whatever constrains the plane, there is an 
observational degree of freedom set by the view sense.)  If there is no planar constraint, 
then the extrinsic degree becomes intrinsic, and i indicates any direction in a plane which 
is orthogonal from the original direction.  Whether it is + p/2 or  - p/2 is determined by 
observation or some other constraint, i.e. whether a right-hand or left-hand rule is 
applied.  With this in mind, it bears noting that while -iE and iB represent rotations within 
the E-B plane, +/- ix, and in some contexts, +/- it, represents a rotation into that plane from 
the x axis. 
 
From this development we can combine (1.102) and (1.104), for the transverse wave 
speeds, keeping in mind (1.112), to get   

 . (1.123) 

Thus the rotational change in the electric field as a function of a change in the magnetic 
field times the rotational change in the magnetic field as a function of the change in the 
electric field is an invariant vector, 1.  From (1.113) and from (1.114) and (1.120) there 
are two versions of this scenario, which we will explore in a moment.   
 
The left hand term of (1.123) indicates that the induced changes in the electric and 
magnetic fields in some manner cancel over time and distance along the path of the 
wave’s travel until, at the point of what we would recognize as a node, the value of both 
E and B is 0.  The transverse changes in the fields, however, do not stop at that point, 
since the 0 point is a relative zero, a point of equilibrium, and the functions are 
continuous through such point, being at a maximum with respect to 

.  
 
We can imagine this as two blades of a pair of scissors that start in a position orthogonal 
to each other and are brought together toward a point 45o from each.  As they come 
together, due to a common pivot point outside the edge of each blade, their open edges 
each become shorter, until they vanish at the end of their travel.  The use of the scissors 
metaphor is not accidental.  Though our treatment here uses vectors, the wave can also be 
modeled as a tensor field.  
 
Thus the E and B fields can be modeled to represent the shear stress components and 
corresponding strains of a stress and a strain tensor, where c in the direction of travel, 
represents the tension components.  The wave form of both fields is sinusoidal, at p/2 
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rotation from each other as indicated above.  At the point of maximum shear strain and 
stress, corresponding with the amplitude of the wave, the transverse wave momentum 
instantaneously vanishes, just as the transverse, shear stresses instantaneously vanish at 
the node.  c then, while invariant with respect to the speed of the wave phase, has a 
transverse component that oscillates and reaches a maximum of 1 as both E and B reach 
0. 
 
As we emerge through the antinodes at ½ p and 1½ p, (1.123) becomes 

  (1.124) 

leaving the product unchanged, although the field directions have all reversed, having 
multiplied both terms of each quotient by -1.  This differential sense change is set by the 
amplitude of the wave, which is a dynamic function of other variables.  Of course, 
(1.124) reverts to (1.123) through a cancellation of the senses, and the changes in the 
differential senses are always simultaneous, so that c remains invariant, that is under the 
following of the two above mentioned conditions. 
 
If we recast (1.123) in light of (1.120), we have the following normalized gradient in the 
direction of wave travel, which describes the radial propagation of an electromagnetic 
wave from some source,  

 . (1.125) 

Note that the second term is algebraically self normalizing.   
 
To arrive at a dynamic expression for the wave, we need some scaling factor that will 
indicate its energy and mass, i.e. its angular frequency and wave number.  Using (1.2) 
and (1.4) we have 
 . (1.126) 
 
We would like now to see if there might be another application of (1.123) using the cross 
product.  We assume, for purposes that we will later make clear, that the wave radiates 
from some locus, so that at that source, the directions of propagation can be resolved in 
terms of three co-ordinates, x, y, and z as shown in the following subscripts.  We would 
expect, therefore, that (1.123) would take the form 
  (1.127) 
where we choose subscripts which best serve our long term purpose.   
 
In keeping with the orthogonal nature of the electric and magnetic field orientation, and 
their cross product which results in a third orthogonal vector, (1.127) requires that either 
the electric or the magnetic fields and their differentials be common to both vectors cx 
and c-z, unless the wave can be modeled as a 4-D wave.  Thus we will make the field 
orientations (not that of the differentials) explicit with the appropriate subscripts.  Since 
there is no evidence that magnetic monopoles exist, we will assume that at the source 
locus a magnetic dipole does exist.  This implies that any electrical fields radiate at and 
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from the center of the dipole perhaps as a ring of quantum charge.  All we are interested 
in are two such fields orthogonal to each other.  One such configuration that might satisfy 
this relationship is  

  (1.128) 

We would imagine, given the dipole nature of B and our innate sense of the justice of 
symmetry, that another such simultaneous configuration exists so that 

  (1.129) 

But wait!  This is anything but symmetrical!  Since the same right hand rule for the cross 
product has been used for both (1.128) and (1.129), the velocity cross products and their 
final cross product are the same in both cases.  We will explore this further, but our 
intention at this point is simply to show that the same ontology which supports a classical 
wave mechanism found in a propagated electromagnetic wave can be modeled as the 
support for the quantum source mechanism, and we can model both as a spacetime 
continuum with inertial-elastic wave bearing properties. 
 
Returning to (1.129), if we assume symmetry at the source, we must assume that instead 
of the right hand rule for the cross product, we should use the left hand rule for the field 
polar opposites of those in (1.128).  Doing this we have 

 . (1.130) 

This implies a basic symmetry at the quantum source which is broken as a result of 
propagation of the EM wave, resulting in a preponderant phenomenology of right hand 
electrical, left hand magnetic, versions of such.   
 
What this shows us about the source, by adding (1.128) and (1.130), referring to Figure 2, 
is: 
 

1) the change in electrical fields as a function of a change in the magnetic field over 
time  results in a radial tension stress along a path of potential wave 
propagation, c+x - c-x which in an equilibrium condition are balanced, preventing 
propagation, 

2) the change in the magnetic fields as a function of a change in the electrical fields 
over the distance  results in the velocity vectors c+z - c-z and a rotation of the 
magnetic dipole, B+y- B-y, making it an axial vector, in this case shown as a left 
hand vector, and which we will call f, 

3) the cross product of the velocity vectors in (1) and (2) creates the vectors c+y - c-y 
and results in a rotation about a second axial vector, this time shown as right hand 
by the blue arrow, SL, which we will call q, at E+z- E-z, which remains, absent any 
perturbations, fixed in space over time, whereas f remains fixed in time, i.e. 
phasing, over space as it rotates about q.   
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Figure 2 – Electro Magnetic Wave Source 

q  is a spin angular momentum vector while the yellow axial vector pointing to the 
bottom of the figure, mirrored to q  and shown as a left hand axial vector, µ, is the 
effective magnetic moment of the source.  The angle between f and the line E+z-0, and 
the analogous one involving E-z are angular strains constituting the electric fields, which 
oscillate in place over time, while the angle between µ and f on either side of the figure 
is a permanent orthogonal distortion which rotates as it moves about q.  The figure 8 path 
that appears to be bent around the central disk on the right hand side of the figure with its 
center at E-x is the oscillatory path of the strain which that point takes as f rotates about q.  
There are an infinite number of such, one corresponding to each point over the 
circumferential distance of f and with each corresponding to two points on the 
circumferential path of q over one 2p cycle.  Thus the stress rotates about q while the 
strain oscillates along the figure 8 path. 
 
We will investigate this model in greater depth.  The opposition of the spin and magnetic 
moments indicates that it is an electron, neutron or an anti-proton, but we will see that it 
in fact represents a neutron.  There are obviously some steps between this form and the 
generation of electromagnetic radiation, in particular involving beta decay and the 
generation of an electron or positron. The significance now is that if we apply the same 
logic to (1.128) and (1.130) as we did to (1.125), we have the standing wave corollary of 
the energy equation found in (1.126) for a rest mass particle, in which factors of 2 
related to the root mean square for the maximum power of a wave and the two instances 
of instantaneous spin energy, E+y and E-y, equal unity giving 

 . (1.131) 
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As we will see, the spin angular momentum is modified by these power and other 
geometric factors, resulting in a coefficient of .  The above figure implies that the 
oscillation pictured is an instance of simple harmonic motion.  An animation of this 
motion is available.  We will examine the kinematics and dynamics of such motion, using 
a model of standing wave motion on a one dimensional string. 
 
Before we examine this oscillation more closely, a few words about continuity and 
isotropic expansion are in order.  It should be stated that what we are talking about is not 
a process of inflation as currently generally conceived.  As modeled here it is not a hyper 
rapid and extensive early epoch phenomena, but rather an ongoing process, that while 
slow from our frame of reference, is accelerating in an exponential manner.  It would not 
be surprising if that exponential manner is in fact a complex exponential expansion and 
thus an indication of cyclical expansion and contraction.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3
2
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Geometry and Topology.   
 
Geometry deals with the subject of the shape of space and objects within that space, 
while topology is concerned primarily with the subject of continuity of a space and is 
intimately connected with the subject of set theory.  These disciplines are vast, and a 
thorough elaboration far beyond the expertise and inclination of this writer, however, we 
will touch on a few matters that have some bearing on the subject under development, 
without undue concern for rigor.   
 
At the heart of set theory and topology lies a paradox that receives little apparent 
attention and that is the nature of a point.  In geometric analysis, it is readily understood 
that a point is dimensionless and therefore has no size.  What it does have is location, so 
it is always described by its relationship to something else, never mind that such 
something else is itself thought of as a point or collection of points.  This last item is the 
departure for set theory and topology which is content to state that a point is understood 
by the neighborhood or locus of other points around it.   
 
If a point has no size, there is little point trying to add up all the contiguous points in a 
space to create a neighborhood, since there are as many points between one point and the 
point next to it as there are seconds in eternity.  There is no manner of determining a 
scale from scratch, so to speak, in this madness.  It is sufficient to draw a closed loop on a 
supposed continuum and state, “This is my neighborhood…”, and draw another loop 
connected to that one, and state, “this is an adjoining neighborhood”, etc.   
 
The continuum is what we start with, and we partition it by defining a portion of it as 
separate from the rest of it, as we with all due seriousness define a portion of the good 
earth to ourselves and our heirs in perpetuity and build a house.  The line separating us 
from our neighbor has no width, but we will both be aware when it is crossed, because it 
does have length.  It has a dimensionless starting and ending point, and the line can be 
seen or at least envisioned by virtue of the fact that they and many other points along the 
continuum in between are separated by a whole lot of infinities of dimensionless points, 
that is, a whole lot of nothing. 
 
It is easy enough to imagine that the widthless circumferences we use to describe our sets 
of mathematical neighborhoods can be shrunk to a point, and this is in fact the method 
that is used to distinguish the genus or different orders of topological spaces that make up 
an n-space or space of n dimensions.  If any and all closed looped lines or analogous 
structures drawn on an n-space can be shrunk to a point, that n-space is considered a 
genus 0, and is held to be equivalent to a sphere.  If some of those loops run the risk of 
being caught up on a donut hole or the hole forming a coffee cup handle or the n-space 
equivalent, they are a genus 1 n-space.  If they can get caught on two different holes they 
are a genus 2 n-space.  This is apparently pretty straight forward, and at the time of this 
writing a gentlemen from Russia was about to be awarded a pot full of money for proving 
that the genus 0 3-space is the simplest  of such and equivalent to the  genus 0 of the 2 
and other numbered spaces.  The problem is that this method of distinguishing a genus is 
based on a fallacy, since you can never shrink a loop down to a point.  A loop has length 
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and every one agrees that a length has dimension, in fact it is the very essence of 
dimension, but it can never be shrunk to a dimensionless entity, any more than, going in 
the other direction, any number of planes can be stacked to form a solid.  They are simply 
different types of things.   
 
To be sure, we can use calculus to integrate an area and arrive at a volume, but that is 
because of the underlying assumption of continuity on which the calculus is based.  
Without the basis of continuity, the functions and the derivatives which they father would 
fail. At whatever scale we try to reduce it to, a loop remains a loop and never will arrive 
at a point.  Which is not to say that holes don’t exist.  Holes are null sets, just as each and 
every point to which a loop might approach as a limit is a null set, and one thing that both 
set theorists and geometers will agree on is that points and null sets do exists.  But you, 
that is a dimensioned entity, will never get there, since there’s no there, there to get to.  
The loop at the limit does not become the point, it surrounds the null set point and retains 
its loopness.  Points, however, do have location, as we have said, within a given 
continuum, be it line, plane, volume, etc., and so does a hole, and that location is where a 
loop drawn around it, within a given continuum, is the smallest.   In the sense of having 
location, therefore, neither hole nor point is a null set and both are defined within a 
continuum and have structure.  It is in order to discuss that definition, the structure of a 
point and a null set, that we entered on this digression. 
 
Poor Gödel and his ordered infinities!  There are at least twice as many rational numbers 
as irrational, since any irrational number whose binary digits we may be counting, that is 
calling out or naming, has one rational number on either side of it at each digit along its 
span; so much for denumerable infinities.  Infinity, at least in the sense of divisibility of a 
continuum, is the rule and not the exception, and counting is simply a way of drawing 
temporary loops on the expanse of it.  It is just that any number of null sets added 
together do not make a continuum.  And a continuum is both whole, that is one, and 
infinite at the same time, all the while being the home of every null set and conceivable 
collection thereof.  Pretty simple when you think about it, or perhaps that is, if you stop 
trying to think about it.   
 
Actually, it is not quite that simple.  The reason the point can never be reached is that a 
spherical surface, a 2-sphere as it is generally called, approaches Euclidean flatness with 
increasing refinement of scale and paradoxically flatness has no scale.  Even the 
curvature of the loop, by itself, gives no concept of scale.  At some point the continued 
shrinking of the loop and the shrinking adjacent field of reference, our tunneling scope of 
observation, if they co-vary or assume a common velocity of shrinkage, takes on the 
quality of a state, a static condition, instead of that of change and motion.   
 
The only way the point can be reached is for us to define it as being there.  We must state, 
“Enough of this tedium. I order you to loose the one dimensional quality of a 1-sphere (a 
circle), and become a dimensionless 0-sphere (a point)!”  And it happens.  But something 
else, very strange, happens.  We can never place another point right next to the first point, 
since we can always zoom in towards the first point at a scale that finds the second 
receding into the distance.  We can continue to zero in on the point, for a length of time 
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equal to that already spent on this shrinking endeavor; for a day, a week, an eternity, but 
we never appear to get any closer to the point.  At any scale it continues to appear just the 
same, just a point.  It will never become a disk or a hole.  We can make it change into 
cross hairs if we like, but they will not change in appearance as we approach, always of 
some length, but forever of immeasurably small width and inscalability.  But then the 
reason for establishing, for pinning down a point is not possession, but rather station and 
partition of an otherwise protean and irrational continuum, and this can be done to a 
reasonable precision and accuracy within a few orders of magnitude. 
 
It is curvature that grants scalability.  Even the most rigorous Cartesian logic assumes an 
arc of continuity across the vast Pythagorean expanse between the x and y co-ordinates in 
staking out an ordinate and abscissa.  And while nature has given us the asymptote, she 
has also given us the tangent and Herr Riemann to show us that the two can be in fact the 
same thing in curved space.  Lines do touch, and just as they may be made to intersect at 
one point in our crosshairs, they can be made as a circle and a line, and thereby, two 
circles, in the world of 1-spheres embedded in a universe of 2-spheres, to intersect at just 
one point. . .or in some cases two.  
 
It is relatively easy to think of a 2-sphere, the surface of a 3-ball or three-dimensional 
volume, as two dimensional, and their denizens as one-dimensional combinations of lines 
and their circumscribed 2-balls.  We might consider a figure eight and its enclosed 2-balls 
and speculate on whether it consisted of two separate disks united at a point of tangency 
or a single 1-sphere that somehow had one portion inverted.  There is no way on close 
inspection to tell an up or down, in or out side of a 2-space, which includes the 2-sphere 
and any number of other 2-manifolds, such as the torus, and including the Klein bottle in 
which the sides are continuous, so there is no way of determining if the 8 is conjoined or 
self-crossed.   
 
In fact, within that 2-space, or 2-manifold, which is generally speaking a space without a 
boundary, the idea of an in and out is meaningless.  It is only from our three dimensional 
perspective that the notion of an in and out arises.  What does have meaning is whether or 
not there is a boundary to the space.  A 2-sphere has no boundary, since the sides, the in 
and out surfaces of the “skin” that we recognize as separating the interior of the 3-ball 
from the exterior, do not exist for the 2-denizen and there are no edges to bump into, as 
for example we would find in the case of a 2-ball or disk which is bounded by a circle or 
1-sphere.  The boundary of a space, generally speaking, is one dimension less than the 
space itself, so that a 1-line segment is bounded only by its two 0-endpoints, a 2-disk by a 
surrounding 1-circle, a 3-ball by the surrounding 2-sphere.  An n-space is not bounded by 
the next higher dimension, though it may be closed or open to it. 
 
It is here, perhaps that the system gets sticky.  For topology, the ordering of spaces, in 
addition to the reference to n-dimensions and genus number and boundary condition, 
allows for some fuzziness by asking whether the space is closed or open.  This is not the 
same thing as whether or not it has a hole in it or even a boundary.  It has to do with 
whether or not, when you strip the boundary off a ball or interior, you take any of the ball 
with you.  It is a matter of whether the n-boundary belongs to the n+1-ball.  If it is a 
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closed space apple, it means when you peel it you take some of the apple with you.  If it 
is an open space banana, you get only the 2-peel and leave the 3-fruit intact.  With fruit 
this is understandable enough, but with n-space manifolds it can get tricky.   
 
This is just another example of the open or closed interval question, which gets back to 
the questionable ontology of a point.  It really is an issue of whether the boundary is 
approached asymptotically or tangentially.  Can you get right up next to the boundary 
point and leave the point without leaving the point next to it?  If it is a Euclidean space 
and you are approaching the open boundary asymptotically, you can never get quite close 
enough to avoid leaving some of the ball behind with the rind, and yet Euclidean space 
says that, by fiat, you can.  If we are dealing with a curved space continuum which is 
truly connected, then any cut we make will be tangential at some point, and the point will 
remain with both the ball and the boundary space, because the n-boundary of an 
n+1-enclosure has no dimension in the direction normal to the cut.  An n-space which is a 
boundary is not like a peel or a skin of an n+1-fruit of any variety.  It has no thickness.  In 
general, however, this does not appear to be topologically admitted.  If you take the  
n-space away from the n+1-enclosure, that enclosure remains intact. 
 
We might imagine that an n-space might be closed with respect to adjacent     
n+1-dimensional spaces and open with respect to an n-1-dimensional boundary.  Thus an 
open disk or 2-ball might be morphed into a spherical bowl with a small opening at one 
end.  Any denizen of the 2-ball, turned almost 2-sphere, as he approached this opening 
would be whisked along the edge, but never quite get to it.  The openness implies that the 
edge can never quite be reached.  If this edge (not the opening itself) is closed, he might 
reach it but move along it tangentially without recognizing it as any more limitation than 
the interior or exterior that only we 3-denizens can see, and that limits his motion 
tangentially to the almost 2-sphere itself.   
 
It gets stickier.  The notion of topology says that any space of the same dimension and 
genus number is in some sense equivalent.  Thus with a 2-ball (a flat disk) and a 2-sphere 
(surface of a 3-ball), though the first is with and the second is without boundary.  The 
geometry of the space, whether it is concave or flat, doesn’t matter.  However, it does not 
say that you can inflate a flat disk and get a 3-ball.  That is adding a dimension out of 
compressed air.  Nor does it let you remove the boundary of the aforementioned morphed 
disk turned almost sphere to close the opening in the jar, no matter how small it lets you 
make it.   
 
And yet it states the equivalence of a coffee cup and a donut, and lets you shape one side 
of the latter into the concave vessel of the former.  The reason is that the torus/coffee 
cup/donut was always the 2-dimensional boundary for the 3-dimensional volume of stuff 
out of which each shape was made, while the 2-ball disk was never a boundary, at least 
an enclosing boundary, of any 3-d thing.  Perhaps physically a drawing on paper, but 
conceptually without any interior, it has no 3-d substance out of which to construct the 
3-d interior for a 2-d surface to be the boundary of.  It is the interior, of a 1-sphere.   
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Yet all is not lost.  If we can shrink a closed loop (closed in terms of set theory as well as 
geometrically) to a point on the surface of a sphere by approaching it tangentially, we can 
surely enlarge it to that point’s antipode and cover the sphere, and if we can cover a 
sphere that is already there, surely we can trace out the same contours of empty space and 
create one from a closed loop boundary of a closed flat disk.  The question of whether or 
not the gap surrounding the antipode can be sealed off depends on whether or not the 
boundary approaching it is closed to it or open.  If the 2-disk itself is closed, that is if it 
“owns” its boundary, and the boundary is itself closed on both sides, that is if it is truly 
only 1-dimensional, the gap can close, since there is no “fuzziness” of an asymptotic 
approach to prevent closure.  The shrinking loop reaches tangency with all the tangent 
lines forming the plane of tangency at the antipode and in fact becomes self-tangent.  We 
might even think of a point, instead of as null set, as a circle which is self-tangent. 
 
We must digress further in our topological digression from the subject of the fundamental 
interactions with some comments about open and closed-ness.  In topology and set 
theory1, the concept of the real number line, in fact the whole concept of a set, is based on 
the use of the Dedekind cut, which stipulates that a space (including a 1-space or line) 
can be cut with a parenthesis, which represents an open or asymptotic approach to the 
cut, or a bracket, which represents a closed or tangential approach to the cut.  The cut 
itself, unless it is a pre-existent boundary of the space under the knife, must be 
approached from both sides, so a scissors must be used, giving us four possible types of 
cuts, represented by  
 
I. Closed – Open   Tangential - Asymptotic  L---](---R 
II. Open – Closed   Asymptotic - Tangential  L---)[---R 
III. Open – Open    Asymptotic - Asymptotic  L---)(---R 
IV. Closed – Closed  Tangential – Tangential  L---][---R 
 
where the L and R serves only to emphasize the left and right hand section of the line or a 
left and right hand set.  Unfortunately, of the four possible types, set theory only allows 
the first three, the first two of which are held to represent the cut at a rational number, and 
the third of which is held to represent the cut at an irrational number.  The set of all such 
cuts forms the real number line and it is a feature of this line, that, by definition, if we 
make a cut so that x is a number in L or an element of the L set, and y is a number in R or 
an element of the R set, where the largest number in L will be less than the smallest 
number in R, then x will be less than y and either L will have a largest element or R will 
have a smallest element.  That is, either L or R will be closed, but not both, and a number 
z can belong to either L or R, but not both.   
 
This no-doubt arose in such manner because the first set theorists were accountants and a 
penny could either belong in one account or the other, but not both, and it could not be 
cut.  If they had been dress makers or carpenters, they would have realized that when you 
cut a piece of fabric or mark off a piece of lumber, the line of demarcation belongs to 
each side of the partitioned space, unraveled thread and sawdust notwithstanding; or 

 
1 An Introduction to the Elements of Mathematics, John N. Fujii, John Wiley & Sons, New York, 1961 
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better yet, had they been surveyors with real live property owners to remind them of the 
fact that, at the very least, the line did not belong exclusively to the other side.   
 
On a fundamental level, numbers are used for counting or for measuring; counting is 
generally conceived as being a quantum or integer affair, and while use of a tape measure 
can be thought of as counting the units and fractions thereof, the notion of continuity is 
essential to the application of linear measure.  If the distance being measured exceeds the 
length of the tape or measuring rod, a position mark is made on the field and that same 
mark is held to be the end of the previous extension and the start of the next. That mark is 
in the last element in the set of the first measure and the first element in the set of the 
next. 
 
In the real and physical world of, from this writer’s perspective, undeniable continuity, 
the world of conservation of energy and momentum and mass, only the fourth of the 
above cuts takes place.  To be sure, there will always be questions of precisely where the 
cut took place, but there is never any supposition that if one side is neatly cleaved the 
other is out there in never-never land, perpetually waiting for the asymptotic axe to fall.  
One is tempted to point to Schrödinger and Heisenberg, but theirs are epistemological 
issues and not ontological, as indicated by EPR and quantum entanglement. 
 
With the above in mind, we can stipulate that a 2-ball can be charted into a 2-sphere, and 
if a closed loop without boundary can be made to vanish, then it can certainly be made to 
reappear, this time with a vengeance.  By squeezing the pode and the antipode of our 
2-sphere together, at the center of its 3-ball, we can create a horn torus, a torus without 
any hole, except for the one single point of self tangency at the center.  Now, that closed 
point can be expanded as a closed loop toward the center circle of the toric annulus in the 
equatorial plane and we have a donut.  From here we can form a coffee cup, and now that 
the genii are out of the bottle, as many holes as we desire, with no lack of continuity.  
And now that we have created a 3-ball of genus-n out of a 2-ball which presumably we 
could have created out of a 1-ball, why not fold the 3-ball-n into a 4-ball-n, etc.  It is all 
just a continuum, after all.  But let us concentrate on the horn torus for a while, which, at 
the risk of disturbing Decartes’ spirit, will herein be referred to as a monad.   
 
This manifold is a hybrid between a sphere and a torus, in the sense that it forms a torus 
for which the hole is but a single point.  Since a single point has no dimension, it is 
effectively the null set, Æ, and as such represents the defining hole of a torus; however, 
as a single point maintains linear connectedness and closure between neighboring points, 
and here neighboring hemi-folds, this manifold is topologically equivalent to a sphere.   
 
Of added interest is that this manifold is invertible through the center in the manner of the 
Möbius strip, and maintains continuity between a lower section and an upper section of 
the opposite lateral half.  If we envision a vertical cross-section through the center of the 
manifold, we have a figure 8 laying on its side or the symbol for infinity, , 
(whimsically enough, if we view the manifold from above and consider the center point 
to be a hole, we have the symbol for 0, while viewing it rotated 90 degrees from the 
exterior side, we have the symbol for 1.) We can make the  by tracing two circles 

¥

¥
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intersecting at a point or with one stroke in the familiar fashion, crossing at the center.  If 
we trace the figure in this latter manner, but keep our marker to one side of the line, we 
will see that it in fact inverts, on the inside of one of the circles, transferring to the outside 
of the adjacent one as it crosses.  The central crossing point thus represents a point of 
inflection for the space. 
 
The central point also maintains connectedness between the upper and lower exteriors of 
the manifold along the tangent line, which is the central axis of a tangent sheaf or bundle 
of circle arcs of radius greater than that of the monad’s annulus, tangent to the annular 
surface at the central point.  Necessarily, the full circle elements of the sheaf form the set 
of all elements exterior to the 2-monad, whose interior we will call a 3-core to distinguish 
it from a 3-ball or 3-donut. The 3-core, then, can be seen as the set of all circles tangent to 
the central point and the central tangent axis with a radius smaller than that of the 
monadic annulus.  Significantly, the central point also maintains 3-core diametric 
connectedness.    
 
It follows that the central point is simultaneously an element of the exterior and of the 
interior of the 2-monad while being the central element of the 2-monad itself.  In fact 
from the perspective of the 2-monad, it is central to all three sets.  The cross section of 
the 2-monad forms the aforementioned figure 8, which is itself a 1-monad and it follows 
that the exterior, interior or 2-core, and the space itself bear the same relationship to the 
central point as those of the 2-monad.  The two apparent disks or 2-balls of the interior 
are in fact continuous through the center diameter of the 1-monad.  We might infer from 
this that the same relationship between exterior, interior and the space itself holds for all 
n-monads.   
 
The following diagram of manifold connectivity is illustrative of the fact that this 
manifold is topologically equivalent to the other three. The charts are two dimensional 
Euclidean representations of the corresponding manifolds, and can be thought of as 
differential areas, which with integration over the manifold surface undergo the necessary 
transformation or stretching required to tile the surface.  

    
 Manifold Charts 
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i. In Chart 1, the Torus, the left and right sides join in common orientation as 
indicated by the direction arrows to form a tube, which then joins top to bottom to form 
the familiar donut shape. The repetitive corner designation, in this case A, indicates a 
common point in the torus manifold.  We could also start by joining the top and bottom 
then join the sides, giving us a different orientation. 
ii. In Chart 2, the Sphere, corners A can be thought of as joining at an equator, while 
the top and right sides and the bottom and left sides come together at the B and C poles 
respectively. 
iii. In Chart 3, the Möbius strip, the top and bottom sides are twisted one half turn 
before joining to form the usual shape, while the dotted sides indicate unjoined edges. 
iv. Charts 4 and 5 represent two equally valid means of composing the Monad.  The 
first, in which the common point, Æ, is at the center, is equivalent to the Torus, while the 
second, in which the B and C poles are drawn together at the center, Æ, is equivalent to 
the Sphere and, some mental gymnastics will show, to the Möbius strip.  However, 
instead of twisting the strip to join A and B, one common corner is joined first as when 
joining A to A in Chart 2, followed by a twisting through the center of the ring to joint 
the other two corners.  The opposite sides are not joined right to left or top to bottom, 
however, but rather the co-terminal edges are joined as with the Sphere, top to right and 
bottom to left, in the case where the A’s are joined first. 
          
As this particular manifold is topologically equivalent to both a sphere and a torus and in 
addition the Möbius strip, and granting the closure and opening procedure of above, the 
Klein bottle, it can be seen as a parent of all of these in 2-space and we might conjecture 
in n-space and to hold the place generally reserved for the sphere.  With respect to the 
mapping of the complex and projective plane onto the sphere, with infinity at the top pole 
and zero at its antipode, with the monad we have that same manifold with the infinity and 
zero point joined at the center of things, the unit sphere occupying the equatorial 
cross-sectional plane, and the negative z axis, which is the 2-space itself, forming the 
apple skin and the positive z axis vanishing in the core.   
 
If we recognize that the imaginary sense i is simply another way of representing a half p 
rotation, and make of it a motive operator, we have a manifold that rotates about its 
central axis or horn, counter clockwise by convention, and about its annulus, upward 
through the horn center and downward at the periphery.  That is, if we imagine the 
2-monad as divided into octants, we can assign a velocity potential for each of the four 
octants in the top half to rotate counterclockwise viewed from above, and simultaneously 
outward and down on the surface of the form toward the octant below, while a 
simultaneous velocity potential exists for each of the lower octants to rotate in the same 
direction on the lower half but inward through the center and to the diagonally opposite 
octant on the upper half.  This last motion amounts to an inversion of the 2-space surface 
through the center in the manner of the Möbius strip.  
 
It remains to consider the nature of a 0-monad or monadic point and the 1-core.  We can 
consider the 0-monad as the central point of an n-monad itself.  Unlike a Euclidean point, 
which is generally held to be dimensionless and directionless, the 0-monad maintains an 



 36 

orientation or direction.  This direction, which we might think of as a differential vector, 
is the 1-core and is tangent to the corresponding 1-monad or 2-monad of which it is an 
element.  It is, however, for an isolated point indeterminate in its orientation, having with 
respect to a 3-core, 6 potential orientations or three degrees of freedom as constrained or 
bounded by the 8 cubic vertices which are the parameters of the 0-monad. The velocity 
potentials, therefore can be assigned to vectors extending from one to another of the 
vertices.  
 
This is not a stipulation of a lattice but rather of an orthogonal potential.  As an element 
in an n-monad, the 0-monad is closed on the 1-core and open on what would be the 
2-core.  That is, it is closed on the tangent line, and open on any line normal to that 
tangent line and point.  The exception is when it is at the position of the point of central 
tangency, in which case it is closed on all sets, the n-monad, its n+1-cores, and its 
exterior, and hence is a point of continuity in all n-space.  At the central point, in 
connection with the dynamics just indicated, it has 2 extrinsic degrees of freedom, 
annular rotation, either up or down, and chirality, or left or right handed, clockwise or 
counterclockwise rotation.  Of these, only the contrast of chirality to annular rotation, 
hence 1 degree of freedom, is intrinsic. 
 
If we consider the 8 vertices of the 0-monad, with regard to the various possible flow 
patterns or velocity potential vectors connecting them, we can see that the above scenario 
involving the use of i as a motive operator can be mapped onto the 0-monad, so that we 
have the following table of possible flows for a right hand, counter-clockwise, +i 
convention.  The related rotations indicate a rotation of the unit vector as seen from the 
positive axis normal to the rotation, resulting in a transformation of a given vertex to a 
vertex indicated as an out vector direction.  Thus a rotation of the +x unit vector i ccw 
about and seen from the +z axis to the position of the +y unit vector j is referred to as +i.  
The cw rotation of i about +z to the –y axis is –i.  Rotation of j ccw about +x to k at +z is 
+j; j cw about +x is –j; k ccw about +y to i at +x is +k; cw to –x is –k.  Where two 
rotations, within semi-colons, are indicated for each vertex, they are not equivalent and 
are non-commutative.  Hence, +i and –k are the two ½ p rotations capable of taking 
vertex 1 to the position of vertex 2.  The criteria here have been to have an equal number 
of vectors pointing to and from and total for each vertex.  Other scenarios are possible, 
such as a counter rotational flow for the top and bottom which reverses over time.  
 
Vertex 
Number 

Relative Octant 
in x,y,z 

In Vector 
from 

Out Vector 
to 

Related Rotations viewed 
from +z, +x &+y axis  

1 +x,+y,+z 4;7*   2;5  +i,-k; +k,-j 
2 -x,+y,+z 1;8* 3;6  +i,+j; -k,-j 
3 -x,-y,+z 2;5* 4;7  +i,+k; -k,+j 
4 +x,-y,+z 3;6* 1;8  +i,-j; +k,+j 
5 +x,+y,-z 8;1 6;3*  +i,+k; -l = -i +d¢!
6 -x,+y,-z 5;2 7;4*  +i,-j; -l = -i +d¢ 
7 -x,-y,-z 6;3 8;1*  +i,-k; -l = -i +d¢ 
8 +x,-y,-z 7;4 5;2*  +i,+j; -l = -i +d¢ 
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A - Unit Cube   B - Monad with Indefinite Expansion 

Monad Orthogonality 

The asterisks indicate a diagonal vector or flow from the lower to the upper octants, 
which can also be interpreted as a clockwise rotation out of topological 3-space into 
geometric 4-space or rather, since it is actually in n-space, the ½ p rotation of the image 
of an n-form about an n-1 boundary, coupled with the orthogonal translation, d¢, through 
n+1 space to another boundary of the n-form.  Note the rotation is the same for each of 
the four vertices, though the translation is to a different octant in each case.  This is 
consistent with similar constructions in lower n-space, as a square can be constructed by 
rotating a line segment orthogonally at one end and sweeping it to the diametrically 
opposite end, and a cube, by rotating a square similarly and translating it to the other side.  
By “sweeping” we are indicating not simply the translation of, for example, a square, but 
its extrusion, after copy and rotation, to span and thereby define a 2-cube and its interior.  
The same can be done with that interior to define a 3-cube and its 4-block, as we might 
call it. 
 
The figures above show a unit cube constructed according to this table on the left, A, with 
expansion along one plane of the system shown on the right, B.  The result, when coupled 
with the arrows interpreted as velocity potentials is a horn torus with potential rotation 
ccw about the upper and lower surface and through the top and into the bottom about the 
annulus.  B can be morphed into a sphere by lengthening the inner diagonals as a spindle 
torus and into a conventional torus by spreading the top and bottom squares.   
 
While A is presented as a unit form, it can be thought of as a differential form with 
potential structure, but no inherent size. Size or scale is conferred on it by dropping a unit 
of inertial density into the center, which then begins to circulate up and out toward and 
about the upper vertices, at which point angular momentum begins the expansion shown 
in B, so that instead of going down the four edges, inertia leads to an expansion in the 
direction of a top surface normal vector and out about the annulus.  This is shown as three 
dimensional, being all that is graphically possible, but it can comprise as many 
dimensions as are needed to describe it, (di-mension being etymologically to divide or 
separate with the mind.) 
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It is the nature of such a configuration that regions more removed from the center will 
have less inertial density than those more central.  Since, as we shall see, gravity is a 
quantum effect and not a property of inertial density per se, there exists a pressure 
gradient and Laplacian outward that results in accelerated expansion.  If there exists a 
third derivative over time corresponding with the property of jerk, then we might expect 
such accelerated expansion to be, not steady, but exponential.  Such dynamics create an 
inertial font at the top of the cube.  The bottom of the cube constitutes an inertial sink as 
the vertices direct the inertial density down and about the periphery, toward a 
concentration at the center. 
 
The following table outlines the parameters, in which line is understood to mean a 
bounded line or a line segment. 
 
n-space, element # in boundary n-block surfaces edges vertices 
0-cube, point 2 l-block, line  0 0 2 
1-cube, line 4 2-block, square 0 4 4 
2-cube, square 6 3-block, cube 6 12 8 
3-cube, cube 8 4-block, hypercube 24 32 16 
 
It may be of some help to provide the algebraic support for these figures.  Using the 
fundamental theorem of calculus, in which the differential dx is seen as the point 
boundary of a line segment, of which there are two, we have the following table for 
n-cubes, which we can think of as origin centered. 
 
 
Space Core = n+1-space Boundary Order 
n Open Closed on Boundary Volumes Surfaces Edges Vertices 
undif x0=dx  x3dxn-2 x2dxn-1 xdxn dxn+1 
0 x1 (x+2dx)1 = 

 x+2dx 
   2dx 

1 x2 (x+2dx)2 = 
 x2+4xdx+4dx2 

  4xdx 4dx2 

2 x3 (x+2dx)3= 
x3+6x2dx+12xdx2+8dx3 

 6x2dx 12xdx2 8dx3 

3 x4 (x+2dx)4= 
x4+8x3dx+24x2dx2+32xdx3+16dx4 

8x3dx 24x2dx2 32xdx3 16dx4 

Table of n-cube breakdown with n+1-core 
 
With respect to the n-sphere, in which the formulae have been converted to a function of 
diameter instead of radius, thus relating to the equations above by a factor of p/2(n+1), we 
have the following table.  With the exception of the 0-sphere which is effectively a one-half 
circumference, and this, subject to interpretation, the n-spheres are manifolds without 
boundary, that is, as manifolds they have no edge.  The figures in the edge column do 
represent an edge of sorts as the extent of their curvature, as it can be seen that they are the 
formulae for a circle.  With respect to the vertices, it can be seen that if we substitute a dr 
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for the dx, which has some justification at the limit, the formulae of the vertices is that of 
the n+1-space itself, indicating the single vertex is the center of the space. 
 
 
Sphere Ball = n+1-space, x = 2r = the diameter Boundary Order 
n Open Closed on Boundary Volumes Surfaces Edges Vertices 
undif x0=dx  x3dxn-2 x2dxn-1 xdxn dxn+1 
0 (p/2)x1

pr1 
(p/2)(x+2dx)1 = 
 (p/2)x+pdx 

   pdx 
pdr 

1 (p/4)x2 

pr2 
(p/4)(x+2dx)2 = 
 (p/4)x2+pxdx+pdx2 

  pxdx 
2prdx 

pdx2 

pdr2 
2 (p/6)x3 

4pr3/3 
(p/6)(x+2dx)3= 
(p/6)x3+px2dx+2pxdx2+(4/3)pdx3 

 px2dx 
4pr2dx 

2pxdx2 

4prdx2 
4pdx3/3 
4pdr3/3 

3 (p/8)x4 

2pr4 
(p/8)(x+2dx)4= 
(p/8)x4+px3dx+3px2dx2+4pxdx3+2pdx4 

px3dx    
8pr3dx 

3px2dx2

12pr2dx2 
4pxdx3

8prdx3 
2pdx4 

2pdr4 

Table of n-sphere manifold breakdown and n+1-balls 
 
We have used a cube as a basic form to show the simplicity with which an orthogonal 
structure can be morphed into an essentially curved structure.  Conversely it shows the 
orthogonal structure that, given any symmetric motion, lies hidden in the most curved of 
spaces.  The horn torus has positive curvature on the outside extent of its annulus were it 
approaches the configuration of a sphere and negative curvature on the inner confines 
where is approaches the configuration of a pseudosphere, with a region of flatness in the 
regions of its upper and lower annular extremal planes.  Such regions of flatness, like the 
crest of a wave, carry the orthogonal potential found at the center outward with 
expansion, and we might think to find orthogonality in a quantum structure albeit in some 
sense inverted from the above.  Such crest, in this case, represents the transition from 
negative to positive curvature.  If we try to imagine the above cube as a 4-cube, and the 
monad as of one additional dimension, we might imagine such flatness as the region of 
our observed universe, the crest of the expanding n-monad.   
 
In the interest of symmetry, it might be imagined that such a structure as A has a 
conjoined twin that mirrors the dynamics above along the bottom surface with a font 
from a left hand rotation, so that the center plane becomes an inertial subduction region.  
We might also envision similar reflection at the top surface, with expansion outward 
along the central plane.  Finally we might imagine a case in which the conjoined system 
oscillates between extension along axis and plane.  We have large scale examples of 
general toric structure in the collimated jets of active galactic nuclei and the central 
planes of spiral galaxies, and it would not be surprising to find such on a cosmic level. 
 
The current general cosmological assumption appears to be that spacetime emerged via 
the big bang from a not quite singular, but probably spherical point.  It is also assumed to 
have been hot.  The concept of a thermal birth seems an attempt to explain the 
presumably conserved energy of the universe initially confined to a very small space.  If 
spacetime itself has inertial properties from which the mass, momentum, energy and 
power of quantum particles are derived through motion, including its oscillatory activity, 
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then the inertial font attributed to a hot, big bang need not have been either hot or a bang. 
The total energy of the universe can be contained in a very small, but finite locus of 
extreme inertial density as a potential energy density as just described.   
 
Unification of the present duality of the general relativistic description of spacetime and 
the standard model description of quantum matter and its interactions is attempted in a 
big bang that is a common source for the presumed separate ontologies of both.  This 
holds a paradox, for if gravity is a quantum property, that along with the other 
interactions, held all together prior to the cosmic inception with a binding intensity that 
exceeded even the darkest black hole, some yet more energetic mechanism was required 
to upset a presumed equilibrium and lead to expansion.  If matter curves spacetime and in 
turn conforms to the confines of that curvature, then we have a problem.  This is a very 
short dog chasing an even shorter tail.   
 
The perspective behind the development herein is that spacetime is an inertial continuum 
that conforms in some manner to the above description of the monad, oscillating 
cosmically over time, probably in the manner of a conjoined system.  This gives it simply 
described regions of positive, negative and flat curvature over the cosmic extent, whose 
local dynamic properties are conditioned by the curvature configuration.  As we appear to 
find ourselves in a generally flat section of this system, we can start our investigation of a 
quantum structure with an assumption of local Euclidean flat space and see what possible 
curved structure arises out of an expansive change in that space.  We might, for example, 
find that it appears to have some relationship to A as found at the center of B above after 
it has been transformed, along the annular surface to a point of isotropy or general 
flatness.  
 
Isotropic expansion is generally stated as an expansive condition that has no center.  In 
fact, expansion of an n-space has two centers; one is the center of the (n+1)-core for 
which the n-space forms the cover, and the other is the local center in the n-space from 
which everything around it is seen to expand.  In the customary inflating balloon analogy 
used to explain isotropic expansion, all points on the surface of the balloon are moving 
away from the center of the balloon, while any loop drawn on the surface of the balloon 
will be seen to expand from a point in its center.  As in the table concerning the n-spheres 
above, one vertex at the center end of the radius and the other at any of the 
circumferential radial end points making the n-sphere’s boundary constitute the centers of 
expansion.  The same holds for the n-cube, and any similarly conforming n-space.  Any 
radial will do.  Any expanding space requires simply an extra spatial center, either  
completely geometric or weighted by some other property, i.e. center of mass, energy, 
etc. and one (and every) local center.  It requires, then, a change in the scale or gauge of 
only one parameter, r, common to each of the n+1 dimensions to effect the isotropic 
change.  The local quantum center is intimately connected to the universal center through 
an isotropic expansion strain and associated stress.   
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2 – The Fundamental Inertial Quantum as a Simple Harmonic Oscillator 
 
Isotropic Expansion and the Generation of Rotational Oscillation 
 
We can examine the cube for Space(2) in the above table with the intention of analyzing 
the effect of an isotropic strain in a condition of assumed uniform dilatation, along with 
the corresponding stress, on a unit volume of space.  In light of the comments just made, 
we can imagine the center of this cube as one center of expansion and the other as extra 
dimensional, represented by the indefinite extension of the four diagonals through the 
eight vertices.  We will integrate the differentials to compare the contribution made by 
each boundary order to the change in the corresponding core, in this case a volume.  We 
are interested in the relative contributions of each order over time to the initial unit 
volume, V, and not to the changing magnitude of the volume itself.  We substitute the 
following boundary placehold identities for Surface, Edge and vertices (Corner), 

, , and  so as to maintain proper integration.  It will be helpful if 
we assign a “normal” boundary strain vector to each of these components, which in each 
case will be in the direction in which the boundary is increasing.  Thus  
    

    
     Cubic Expansion  

  (2.1) 

  (2.2) 

  (2.3) 

In the following discussion, no assumption is made about the universal configuration or 
number of dimensions of the space in which the unit cube is embedded.  We are only 
interested, at least initially, in the local geometry, which is assumed to be flat and 
therefore Euclidean.  Thus it is background-independent.  As to a fourth spatial 
dimension, we will see that change in or motion of such dimension is interchangeable 
with a dimension of time in a three spatial dimension context. 

2 21 S xº 1 11 E xº 0 01 C xº

1 1
2 3S E C= =

2
32E S C= =

3
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In this case the integration will be simultaneous on each order, as indicated by the pre-
subscript n, in so that we have 

  (2.4) 

  (2.5) 

  (2.6) 
Solving for the following ratios, all at unity, where the designations S, E and C are unit 
names, their dimensional quantities being absorbed in the numerical coefficients of an, 
i.e. 6 square units times a, 12 length units times a2, etc., gives the value of a for each 
equivalence.  The ratios have been stated with the highest order in the consequent or 
denominator so they are decreasing from infinity as dx increases, until unity is reached as 
stated.  We have (showing the negative for the sake of symmetry) 

  (2.7) 

  (2.8) 

  (2.9) 

  (2.10) 

  (2.11) 

  (2.12) 

  
If we think of the cube as embedded in an isotropic elastic continuum, which is of some 
inertial density and under tension, dx represents the work done in displacing or distorting 
the medium, and by virtue of Gauss’ theorem, the integration of that work represents the 
energy of the distortion.  By way of reference, in an ideal elastic medium, the stress 
operating on the locale is a function of the strain and the elastic modulus as 

  (2.13) 

where F is the stress tensor, E is the strain tensor, Y is Young’s modulus of elasticity, s is 
Poisson’s ratio or the negative ratio of lateral to axial or shear to tension strain,  is the 
mean pressure in the medium, and 1 is the idemfactor or unit tensor.  Assuming a value 
of s of -1/3 for an ideal isotropic 3 dimensional medium we have 

 . (2.14) 

The vector fundamental tension stress component is 
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  (2.15) 
and is related to the energy distribution by Gauss’ theorem for the radial strain 
  (2.16) 
and Stokes’ theorem for the angular or tangential strain 
  (2.17) 
 
These boundary order ratios, then, are inflection points indicating the energy 
contributions and potential energy gradient changes over time among the boundary 
components.  In an ideal static, kinematic case the change in the ratios with an increase in 
dx would have no functional effect on the components, if dx has the same magnitude for 
each of them as it increases.  This would amount to a simple change of scale.  The real 
solutions above would appear to reflect this static condition.  However, in a dynamic 
condition, we might imagine that as each ratio decreases below unity and past the 
inflection point, the magnitude of the consequent exceeds and affects the antecedent or 
numerator, whose magnitude then becomes a partial function of the consequent.  This 
would appear to be the case for the complex solutions in particular, which correspond 
with an angular gradient potential of the boundary vectors from that of the antecedent to 
the direction of that of the consequent.  
 
These evaluations were done with Maple.  It is significant that if we convert (2.11) to 
complex polar notation as in the last term, the modulus is equal to the value for a in 
(2.10).  It is important that we understand that the ratios represent the point at which the 
change in volume due to the sum totals of all component orders in the antecedent and 
consequent are equal.  It is not the point at which one single component of a given S, E, 
or C times its appropriate  is equal to another, since this happens for all at the 
point where a = 1.   
 
In these evaluations, the S component of the strain and hence of the work predominates 
until (2.7) is reached.  At this point, the stress will begin to shift from a predominance of 
tension to that of shear, meaning there will be a potential for the surface and edge strains 
to oscillate.  As the edges and vertices ring each of the  surfaces, the system remains 
basically stable, however.  At the point of (2.8) the edges assume dominance over the 
surfaces and a gradient is produced for the bulk strain and the tension stress in the 
direction of the edges.  Once again, the 2:1 symmetry of edges to surface maintains 
stability.  At (2.9) the vertices contribute more work than the edges and the strain 
gradient shifts in their direction.  Thus there is a vector potential from the surfaces to the 
edges to the vertices.  Once more the symmetry between vertices and edges maintains 
stability. 
 
Jumping to (2.12), at this point the strain contributed by the vertices dominates both of 
the other components combined and the related stress is greatest at these locations.  This 
would result in a dissipation of the energy altogether, were it not for the unusual and 
unique condition created by (2.10) and (2.11).  The point at which the strains of the 
vertices come to equal those of the surfaces is also the point at which their combined 
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strain comes to equal that of the edges, as given by the modulus of the latter’s ratio.  We 
can assume that the imaginary component of this ratio indicates a rotational component 
of  or 30o, and since the vertices are assuming a predominance over the surfaces at this 
point, having already exceeded the edge strain, and as there is an imbalance in the 
number of vertices to surfaces, a necessary break in symmetry ensues.   
 
We can imagine a rotational potential of the surface strain in the direction of the vertices, 
which by virtue of the asymmetry between S and C, of 3 degrees of rotational freedom 
and 4 possible rotational axes, results in an eventual rotational strain about one pair of the 
axes.  This is simultaneous with a shift of the Es in the direction of S + C and a dragging 
of the strains at each of the two axial C poles.  This then leads to a rotation of the axial Cs 
in the direction of one of the three E pairs extending from those two vertices.  The 
equation of (2.11) gives this rotational relationship.  The nature of the ambiguous sense in 
the argument is indicative of the equation of a rotation and its complex conjugate, when 
viewed from both senses of its axis, i.e. by rotating it about the real axis, where  means 
plus and minus and not plus or minus, if we adjust the Euler identity to 
 . (2.18) 
One end of the axis of strain then can be shown as indicated by the “symmetry breaking” 
in (2.21). 
  (2.19) 

  (2.20) 

  (2.21) 

 
Thus, the strain vector E, rotated in some direction , is equal to  of the S and C 
strains rotated  in the opposite direction, presumably in the same plane.  In fact, this 
states that C rotates  while S rotates .  We can see specifically how these rotations 
occur in Spin Diagrams 1 and 2.  We can also see there how a rotation back in time of  
equals one forward in time by  and vice-versa, if their plane of rotation, f, is itself 
rotating at a constant rate with respect to an orthogonal plane, q, that is where the two 
axes intersect at the centers of rotation.  However, it is shown there that this corresponds 
with a rotation of q, back  and forward , indicating a variability in the strain velocity.   
 
It should be understood that this cubic structure is simply an expression of the orthogonal 
tendency for stress equalization and energy conservation.  The condition found at (2.10) 
and (2.11), then becomes a stable dynamic condition of rotational oscillation or spin, 
within certain parameters of inertial density and mechanical impedance.  If the isotropic 
tension in this situation was sufficient to increase the strain indefinitely, if the medium 
was to lose its elasticity and become plastic or even rupture, any tendency to oscillate 
would be overcome by the transfer of energy via strain to the vertices.  Local energy 
would not be conserved, but be drawn away by the strain.   
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It is essential to extrapolate this scenario to the hypercube, H, to achieve a full 
understanding.  We will skip the integrals but show the results for the corollary of (2.6) as 

  (2.22) 

 
There are 25 combinations with corresponding non-ordered permutations or sub-
combinations, for the 4-cube; 7 involving all 4 parameters, 12 permutations involving all 
sub-combinations of 3, and 6 one to one relationships.  With the 3-Space, there are 2 
single real positive solutions at (2.8) and (2.9), one instance of a complex solution at 
(2.11), one correspondence between a real and a complex solution at (2.10) and (2.11) 
where the real value of a in one is equal to the complex modulus in the other, and one 
instance of a correspondence of solutions with sense inversion, (2.7) and (2.12), that is 
their solutions have the same magnitude, but of opposite sense.  As might be expected, 
the 4-Space shows significantly more of these symmetries.  It should be noted that while 
an attempt has been made to analyze the ratios qualitatively so that all are represented as 
decreasing with respect to an increasing dx, they have not all been checked quantitatively, 
and some may be increasing as shown.  In fact, (2.35) and (2.37) are found to be 
increasing at the point represented by the first positive solution and decreasing at the 
second.  For (2.32) it is worth stating that for every value of the ratio , 
the modulus is ½ and the argument ranges from 0 to ½ p. 
 
It is important to remember that a given component in the 3-cube is identical to the same 
component in the 4-cube, but the relationships between them are different.  An edge still 
is bounded by 2 vertices, but there are 4 edges intersecting at each vertex of the 4-cube.   
A line segment in an x-y plane is qualitatively no different than one in the z-x or for that 
matter z-w plane.  In fact a point in 3-space also has a location in n-space, at least in 
Euclidean n-space.  In the following, it is also important to remember that a is not the 
value of the corresponding ratio, but rather the value found in both antecedent and 
consequent when the ratio equals 1.  The evaluations are based on the following identities 
in (2.23),  
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  (2.29) 

  (2.30) 

  (2.31) 

  (2.32) 

  (2.33) 

  (2.34) 

  (2.35) 

  (2.36) 

  (2.37) 

  (2.38) 

  (2.39) 

  (2.40) 

  (2.41) 

  (2.42) 
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Once again using Maple, there are a total of 10 couplings involving complex solutions, of 
which one is exclusively complex and one other has only a zero for the third and real 
solution.  Only one single real positive solution is given.  There are, however, 7 
corresponding pairs of solutions involving sense inversion, 5 real and 2 complex.  Note 
that all cases of sense inversion involve a combination of one or more components in 
either the antecedent and/or consequent and the sense change is associated with a 
transposition of one or two components in each pair.  These do not appear to have any 
special relationship to the conditions of the 3-cube, at first glance, and we have not 
investigated them further.   
 
There are several, however, that appear to have a direct relationship to some of the ratios 
of the 3-cube.  Two conditions of correspondence are found between a real positive 
solution and the complex modulus of a complex solution with a positive real component.  
(2.28)  and (2.41)  are directly related to (2.10) and (2.11) respectively, the real 
solution and the modulus of the complex of the second two being equal to the product of 
the first and .  The argument of (2.41) is the angle at the center of a cube between a 
radial normal to an edge of the cube and one extended along a diagonal to a vertex.  
(2.25)  and(2.32)  are related to (2.8)  with a common value for their real 
solutions and the modulus of the complex one.  The cosine of the argument of (2.32) is 
equal to the solution of (2.27) , which is the same ratio coupling as (2.8). This pairing 
(2.32) in turn has a modulus equal to the real and imaginary components of an additional 
complex solution in (2.48) .  This latter solution has an argument of p/4 or 45o which 
appears to be an extremely stable condition, as found in a sine wave model as the point of 
maximum power of the wave, where the product of the transverse wave force and 
transverse wave speed are maximum.  It is also the angle of the strain vector E discussed 
above for the 3-cube, with respect to the plane normal to the spin angular momentum 
vector as shown in the spin diagrams.  In the model developed here, this condition is 
found to be invariant and rotates about the oscillation’s angular momentum vector.   
 
Finally, (2.41) , (2.48) , and (2.26)  are found to be related in a most 
profound way in the mechanism of the oscillation herein described.  The imaginary 
component of (2.41) equals the modulus of (2.48).  Note that (2.26) represents a  

rotation due to the interplay between the volume and vertex components of strain and a 
modulus of that strain of .  Using the equation for (2.26) or 

  (2.49) 

  (2.50) 

 
tells us that a rotational oscillation of the 4-volume (boundary) strain V of modulus  
by  is equal to 4 axial rotations about the vertices of the same modulus and argument, 
where the 2 in the consequent indicates simultaneous rotations of opposite sense at each 
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end of an axis.  The oscillation of V is fourth dimensional, and therefore beyond our 
direct sensory ken, however, the 4 vertices are not, and we can envision the above 
consequent, the expression in 3 dimension of this four dimensional rotation, as a 
sequence of 4,  rotations about the 4 diagonals of a 3-cube.  This sequence leaves the 
cube unchanged and avoids the entanglement condition, i.e. the continuity of Euclidean 
3-coordinates of the cube are not twisted by the sequence.  This condition of limits on the 
twistability of the continuum strain is a necessary consequence of its inertial/elastic 
properties.  As the rotation of V is continuous, we would imagine that the sequence of 4 
rotations is continuous, i.e. the strain rotates from one reference diagonal to another about 
one of the three surface axes of the 3-cube.  We can also envision this as one diagonal 
axis rotating , followed by a 2 p rotation of the same sense about one of the adjacent 
3-cube surface axes.  We can also treat it as a sequence of 4 orthogonal permutations. 
 
We can show this configuration simply.  If we align a hyperbolic surface of revolution 
about the y axis of the curve  
  (2.51) 
at each of the eight vertices of a cube so that each of them is at the angle of the argument 
given by (2.41) as just described, and so that the rims or circles of their bases intersect at 
the centers of each of the six surfaces of the cube, the following will be found concerning 
this geometry, which we will call an inversphere.  We can also, as an alternative, create a 
similar construct using a pseudosphere in place of the above surface of revolution.  Given 
a constant negative curvature of -1 for each pseudosphere, the resulting inversphere 
would have a constant negative curvature.   This points to the development of the monad 
above.  With respect to the inversphere: 
 

1. Each surface of revolution, which we might call a hyper-axis or h-axis and 
which can be represented by a complex plane, with the imaginary 
dimension parallel to the circumference of the revolution and the real 
along the diagonal axis, will have a curvature of negative 1 at the rim, 
remaining negative while decreasing, that is, moving toward zero or 
flatness, with distance along the asymptote.  Here the left four of Figure 4 
are shown, their designations corresponding with the axes of Figure 3 
below. 
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2. The rims will have a radius of .  The area of the circle formed by the 

rim is therefore , and its complex representation is  corresponding 

with .  
3. The rims will intersect orthogonally with each other at the cubic surface 

centers, so that there are three h-axes adjacent to a given h-axis along the 
cubic edges which we will refer to as the proximal axes.  

4. The rims from h-axes located diagonally across the cubic surface from 
each other will be parallel or tangential at the same point at which they 
intersect with their proximal axes.  We will call the corresponding parallel 
axes the distal axes.  One set of mutually distal axes can be called the 
positive h-axes. 

5. Each h-axis has a spatial inversion or anti-axis which is proximal to the 
distal axes of that h-axis.  The set of their spatial inversions can be called 
the negative h-axes. 

6. Each rim intersection is a  rotation from the others about the cubic 
diagonal, associating it with .   

7. The distance between cube surface centers describes an octahedron of 
edge length .  The surface area of the octahedron is therefore  and 

the volume is .  The radial normal to the octahedron face is ½. 
8. The cube will have an edge measure of .  The surface area of the cube is 

18 and the volume is . 
9.  The concentric sphere intersecting at the rim intersections will have a 

radius of .  The surface area is 3p and the volume is . 
10. We can think of this arrangement as the expression of a 4-cube in a 3-

space, where the orthogonality condition of the 4-D space is met by the 
rim intersections, the center of each component of sphere, cube, 
octahedron and h-axis intersections being a common system center.   

11. This configuration can be reduced to a 3-space orthogonal system simply 
by collapsing the cube along the W hyper-axis, as in the figure at left 
below, resulting in the co-ordinate system at right. 

   
Figure 4 
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The condition of (2.8) , (2.25)  and (2.32)  is represented by (2.48)  at 
each h-axis.  Thus the orthogonal projections of the argument of (2.48), described as 
extending from the system center to each cubic edge midpoint, are equal to the modulus 
of  (2.41) , and the argument of (2.26)  is the rotation of that axis between 
proximal intersections and cubic surface centers. 
 
In terms of  we are only interested in positive or increasing real values, although 
in the context of complex values, some negative real components as in (2.26) are of 
interest.  A deeper analysis would no doubt find significance in all of the couplings, but 
we are only interested in the general manner in which the 4-cube and the 3-cube 
couplings might interact.  In this regards it is important to remember that in the case of 
the 4-cube, the volume is a boundary that is increasing while in the case of the 3-cube, it 
is the base space, held constant, upon which the boundary changes are taking place.   
 
From the perspective of a rotational oscillation, as found in a torsion pendulum or a jump 
rope oscillation, of interest are those couplings of two boundary parameters, V + E and 
S+ C, which have an intervening parameter, S and E respectively.  More interestingly, in 
both these cases, V + E for the 4-cube and S + C for both 4-cube and 3-cube, the two-
parameter components also have a ratio between themselves whose solution is ( ) real 
and equal to the modulus of the companion ratio.  (2.48) gives the special case of V + E 
with S + C.  Unlike the other three rotational oscillator couplings, it has a positive real 
solution in addition to its complex solution.  It also has the two parameter component 
ratios in common with the other two oscillators of the 4-cube.  The remaining couplings 
with complex solutions all have intervals between their real and complex moduli 
solutions, for most exceeding 1, which mitigates against oscillation, with one exception.  
(2.26)  has a real solution that equals its modulus, thereby indicating rotational 
oscillation.  In addition, the cosine of its argument is equal to the modulus and real 
solution for  and   at and its sine, to the 3-cube modulus and real solution for 

 and  at , and to the 4-cube modulus and real for   and  at 

.  Thus the rotational parameters of the other rotational oscillation or spin 

couplings, can be found in the simple ratio of . 
 
Within the context of the 4-cube, the first value that arises is (2.42)  followed 
closely by (2.30) .  This simply shows that the vertex component adds very little at 
this juncture, although it does have a rotational element, but the negative real component 
indicates a significant rotation which would seem out of synch with the small real strain.   
A similar comment could be made about (2.33)  which is next in the real order, 
though the potential rotation is much less.  This is followed by (2.24)  which has no 
rotational component.  It is significant in that it is the value of Poisson’s ratio in an ideal 
isotropic elastic solid, relating the axial to lateral strain and thereby, tension to shear 
stress. 
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Next is (2.35)  with no rotational component, followed by (2.44) , which has 
a rotational component.  The real solution and therefore the strain is negative, however, 
and is out of scale with the modulus of the complex solution, which would mitigate 
against rotational oscillation.  This modulus and the positive solution of (2.36)  are 
the first values to exceed any of the solutions for the 3-cube.  The next ratios (2.25)  
and (2.32)  involve the first of the oscillatory groups.  The real solution of the first 

and modulus of the second are equal to each other and to that of (2.8) , while the 

cosine of the argument of  coincides with the real solution of (2.27) .  Thus we 

might associate an actual oscillation of the 4-cube with the potential of the 3-cube.  

This is followed by (2.39)  which has a real solution and is the 4-cube corollary of 
the first ratio of the 3-cube.  It is of no special interest other than being, along with (2.9)

 a precursor for the next coupling, which is (2.48) , perhaps the most important 

of the whole assemblage. Together,  and  indicate a growing predominance of 
E and C over S and then C over E, or shear stress over tension, followed eventually by 
torsion over shear.   
 
The argument of  represents the power of the strain oscillation, first in the 
oscillatory twisting of the hyper-axes at , then subsequently with the rotational 
oscillation of the 3-cube itself.  Given the above description of the inversphere, the 
modulus of this solution represents the radius of and in the plane of the rim of the h-axis 
at the point at which its curvature is -1.  The argument is the power phase of an 
oscillation which can be found as a phase constant in the eventual rotational oscillation of 
the 3-cube.  This is followed by (2.46) , which adds no new oscillatory components, 
but does show the gaining dominance of the higher order boundary components, E and C.  
This culminates in a new oscillatory condition at (2.26) .   
 
Note that the real value and the modulus of  is slightly more than the values of 

, ,  and slightly less than the values of  at oscillation.  We can 

interpret the condition at  as an oscillation about each of the 8 vertices.  Each 
oscillation involves a twisting or torsion ultimately of  in each direction about each h-
axis.  The proximal axes will twist counter to the instant rotation sense of a given h-axis 
as will the anti-axis, all as viewed from the exterior of the system.  The distal axes will 
twist with the same sense as the given h-axis, thus the directional sense of these axes 
corresponds with their rotational sense vis-à-vis the other axes.  The strain on the 
enclosed sphere at maximum twist will be of a simultaneous lengthening along each 
cubic axis and flattening in the plane of said axis and the cubic axis from which the strain 
occurred and at which it is at a minimum, ideally zero, as indicated in the figure below.  
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The two pairs of distal axes on each surface create two countervailing torques, which in 
this oscillatory condition are in equilibrium. 

   
Figure 5 

This initial symmetrical condition of  rotational oscillation of each of the four 
diagonals is broken upon dx reaching the oscillatory threshold given by  at .  
This results in a permanent rotation of  of one pair of the E vectors as indicated by 
(2.21), thence the whole system strain continues to oscillate, while the stresses rotate and 
generate an angular momentum vector. (2.26) indicates the rotation of the stresses in time 
among and about the four diagonals, which represent the four orthogonal axes of H.  The 
oscillation of the 3-cube is supported and driven by the 4-stress which is concentrated in 
one transforming axis.  (2.48)  represents the power moments or positions of 
maximum conversion of kinetic to potential energy and vice versa.   
 
Finally, (2.41)  represents, in addition to the diagonals, a capacitive and an 
inductive torque that is co-linear with two of the diagonals and is the product of crossing 
into the power moments from their positions of equilibrium strain and rotates with them 
about the angular momentum vector, all described later.  The modulus and the solution to 

 at represents the radial length from the center of the inversphere and 3-cube to 

the midpoint of the cubic edge.  The solution  in this case indicates a 
rotation of this vector into the diagonal or one of the h-axis or of E into C.  Solving for 

  

  (2.52) 

after reduction and some parsing gives 

 . (2.53) 

Here as with the companion relationship for the 3-cube, we have “broken symmetry” 
with the rotational senses, and see that rotation of two edge strains into an adjacent corner 
is equal to two orthogonal rotations of a surface strain and a flip of a vertex strain from 
one h-axis to a proximal axis.  The moduli in this case correspond to the metrics of the 
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inversphere, where  is the distance from the cubic center to the cubic vertex.  We will 
see that this represents an instance of beta decay, where the surface and vertex rotations 
indicate the flip of the electrical phase torques from one pair of vertices to one of three 
proximal pairs.  In the case of the inductive torque, we have an electron emission along 
with a flip of the magnetic moment, and in the case of the capacitive torque, we find a 
positron emission, without the magnetic moment flip.   

     
     Equal Area Cube and Sphere  

The position indicated as the midpoint on the cubic edge is of special interest.  If we 
analyze a concentric cube and a sphere of equal surface area, and presumably of equal 
total surface stress, we will find that the radial to the midpoint as represented by  
exceeds the spherical radius (and the path of the rotational oscillation strain) at that point 
by a factor of  
 . (2.54) 

This indicates that the rotational path of the strain constricts the diagonals and restricts 
the operation given by .  Thus this differential must be overcome by the increase in 
stress of that operation.  If we assume that the differential given by (2.54) is one 
component of the cross sectional area on which an orthogonal stress is operating, then the 
square of that value gives a differential stress required for the diagonal to flip of 
 . (2.55) 
The ratio of differential stress to the augmented total is then 

  (2.56) 

which when inverted is  

  (2.57) 

It bears noting that the 2002 CODATA ratio of the electron to neutron mass is 
0.00054386734481(38), or within 2.796…x10-8 of the value of (2.56).  Thus the ratio of 
the differential stress needed to produce beta decay and the stress of fundamental 
oscillation correlates significantly with the ratio of the mass-energy of the product of that 
decay, the electron, and that of the fundamental oscillation, the neutron. 

3
2

( )4S
C

( )2 3 3
3 2 32

1 0 023326708. ...r p p
p

d = - = - =

( )4E
S C+

2 0 0005441353061. ...rd =

2

2
0 0005441353061 0 0005438393841

1 1 0005441353061
. . ...
.

r
r

d
d

= =
+

2

2
1 1838 778193.r
r
d

d
+

=



 54 

  
With reference to beta decay, one additional observation concerns the weak mixing angle 
yielded by the final measured asymmetry stated in the September, 2005 issue of Physics 
Today by Bertram Schwarzschild in “Tiny Mirror Asymmetry in Electron Scattering 
Confirms the Inconstancy of the Weak Coupling Constant” as .  
If we consider the surface area of a sphere in steradians as 4p, the portion spanned by 
each cubic edge in conjuction with the above development is one twelfth that or an area 
of p/3.  A linear component of that measure would therefore be and would 
correspond generally and perhaps in some statistical manner with the distance from a 
cubic surface vector to a vertex vector as in the interplay between S and C at .  
The arc distance between the mid-point of that arc and each of the three parameters E, S, 
and C is then ½ .  We then have the following, which is stated phenomenologically 
and without causal analysis 
 . (2.58) 

 
This is the last ratio of interest, as it marks the final oscillatory condition for the 4-cube.   
We can show this development in the following orthogonal matrices.  First the above 
rotational oscillation can be given by a 3-D strain spin matrix, Eµn, in which we assume a 
stationary spin angular momentum vector, , as our reference frame pointed in the 
+z direction. We will give all six semi-axes, where  is the direction of strain given as 
the double dot product of a into the b surface of the cube, as developed in Physics of 
Waves, Elmore and Heald, or 

  (2.59) 

 

  (2.60) 

where a unit statement of a is 

  (2.61) 

Note that plugging (2.61) into (2.60) for unit values of b gives 
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  (2.62) 

The following Wave Diagrams show the conditions brought about by the above 
development.  

    
    Wave Diagram 1 – Double Rotation, f (q) 

The thin curved red lines represent the strains associated with  where the argument 
of that coupling solution is found in the dark central cross representing the power 
moments, charge/potential (E) and induction/kinetic (M), represented by the f vector, and 

 which has rotated the x axis from its initial position, X.  These power moments are 
analogous to the positions of maximum power of a wave on an ideal stretched string 
shown below. 
 

 
   Wave Diagram 2 – Kinematic Functions of h(t) 

 
The following Spin Diagram shows the strain path in red for point +y at  at 
which time the strain at that point is in a relative equilibrium position, (other than a ½ p 
twist) and transforming so that  
  (2.63) 
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Note that this recapitulates Figure 2 in the section, Wave Bearing Continuum. 

  
    Spin Diagram 1 – Spin Energy Cycle 

The initial condition consists of a symmetrical 4-oscillation given by  at all h-axes.  
The initial co-ordinates are given by the upper case +X, +Z, and –Y. The oscillation about 
the (+X, +Y, +Z)-(-X,-Y,-Z) h-axis, in which +x oscillates from its equilibrium position 
through +X, between +Y and +Z, is broken at  as indicated by (2.21), when 
+x is at +Y by a clockwise rotation about the +X axis to arrive at the position in the spin 
diagram.  From this point the restorative forces begin the rotational oscillation in a 
counterclockwise sense about +X and the spin vector, SL.   
 
The heavy red E and M moments show the points of maximum conversion of kinetic to 
potential energy, E, and potential to kinetic energy, M, for that locus of strain, and are 
separated in time by .  The angles e and µ are , ((2.11)and (2.21) ).  
The angles between the points on the path, at E and M and the plane, q, at the midpoint of 
the line from the system origin or center to the point of maximum kinetic energy, K, are 
0.615479709 (see (2.41) ) and between M and E moments and the plane, q, at the 

center is  (see (2.48) ).   
 
Absent nuclear or other inertial confinement, SL is not constrained to +X or any other 
particular direction over time.  The rotational oscillation continues at resonant frequency 
until the conditions found at ,  precipitate a flip in the M moments and their 
corresponding inductive torques.   
 
The symmetry between the 3-cube and the 4-cube can be represented by the following 
orthogonal matrices of space/time permutations involved in the above description when 
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summed over one cycle. As there is inversion symmetry, only half the matrix is shown.  
The permutations indicate the physical distortion of the medium.  The 0 time given below 
is at the start of an arbitrary cycle and corresponds with  in the diagram above 
(for reason having to do with the history of the generation of the graphics.) 

 
This series of permutations can be carried out by a sequence of ccw  rotations about 
the cubic diagonals as with  given by the combination of each diagonal’s defining 
cube sense/axes, facing the cubic center.  There is an obvious lack of symmetry in this 
matrix between all the axes, since +y and +z apparently oscillate over one p , while +x 
rotates around +z.  Note that at any phase, when either +y or +z is at the equilibrium or 
mid point of its oscillation, the other axis, +z or +y, is at the extremum. This can be seen 
if we were to start our phases at w1.  In this case, however, in the rotation column it 
appears that +y is rotating about +z, and that it is –z and –x that are at e and m 
respectively. The e and m in the table below merely indicate the condition at wt = 0, and 
they alternate with each p/2 change.  
 
 Phase  rotation m e ccw at  
w0 wt = 0 +x +y +z  
w1 wt = p/2 +y -z -x -x,-y,+z 
w2 wt = p -x +y -z +x,-y,+z 
w3 wt = 3p/2 -y +z -x +x,+y,+z 
w4 wt = 2p +x +y +z -x,+y,+z 
 
In actuality, closer analysis shows that both +y and +z, as strains, oscillate between +X 
and –X, through their initial positions, +Y and+Z, while +x and –x rotate as sustained 
strain and stress points in the Y-Z plane, twisting so as to maintain continuity with their 
intital positions at +X and -X.   
 
We can create a corresponding 4-D orthogonal permutation matrix, adding a fourth 
dimension, w, and representing it with the inversphere.  
 
 Phase e m e m ccw at cube 
w0 wt = 0 -x +y +z -w  
w1 wt = p/2 -w -z +x +y +x/-y edge 
w2 wt = p +x +y -z -w -x,+z,-y,+w face 
w3 wt = 3p/2 -w +z +x -y -x/+y edge 
w4 wt = 2p -x +y +z -w +x,-z,+y,-w face 
Results in a 4-D rotation ccw at z/-w edge 
 
The tie in between the 3-D and 4-D matrices follows, but first we should note a few 
properties. First, there is no sustained rotation about a diagonal axis, though there appears 
to be one analogous to that of the 3-D at one of the edges, and all permutations are shown 
to be oscillations between two ends of an axis through an intermediary axis.  These 
oscillations can be generally described by a rotation of an axis not orthogonal to the other 
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4 which itself rotates about the center of the cube and through the plane bisecting the 
cube at the +x,+y,-x,-y vertices.  The transformation between the w3 and  
w4 = w0  phase is analogous in three dimensions to a spatial inversion through the origin 
or center of the cube followed by a ccw 90o rotation at the bottom face.   
 

  
As to the correspondence between the 3 and 4-D matrices, to remove the w dimension, 
we can start with the 4-D form and make the equations shown in the left column, 
abstracting their correspondence from the matrix.  
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 Phase e m e m 
w0= -w wt = 0 -x +y +z  
w1= -w wt = p/2  -z +x +y 
w2= -w wt = p +x +y -z  
w3= -w wt = 3p/2  +z +x -y 
w4= -w wt = 2p -x +y +z  
 
We then combine the first and last columns to get a table that is essentially the same as 
the 3-D form above with the important exception of the senses of the xs and the 
ambiguous nature of the first column.    
 
 Phase e&m m e  
w0= -w wt = 0 -x +y +z  
w1= -w wt = p/2 +y -z +x  
w2= -w wt = p +x +y -z  
w3= -w wt = 3p/2 -y +z +x  
w4= -w wt = 2p -x +y +z  
 
We see, however, that this is associated with a contrary sense of the w in the frequency 
column.  Inverting this sense is equivalent to a time reversal.  Transposing this sense and 
converting the first oscillation denoted with an e&m to a rotation, we have the original.  
The underlying symmetry between the 3-D fundamental quantum rotational oscillation 
and a 4-D spatial oscillation becomes apparent. 
 
 Phase rotation m e 
w0= +w wt = 0 +x +y +z 
w1= +w wt = p/2 +y -z -x 
w2= +w wt = p -x +y -z 
w3= +w wt = 3p/2 -y +z -x 
w4= +w wt = 2p +x +y +z 
 
Two items should be mentioned concerning this development with respect to the standard 
model.  The first concerns the manner in which this description might be consistent with 
the quark model.  It is obvious that there is an internal spin structure in the nature of the 
nodes, antinodes, and various moments and torques of the wave strain.  We will see that 
an analysis of these features reveals a fractional charge, and that the phenomenology of 
quark confinement is the ontology of wave nodes and antinodes.  The second concerns 
the other two flavors of particle families, generally centered around their leptons, the tau 
and muon.  Since there is strong evidence that these last two particles mutate, specifically 
in the case of solar radiation, the assumption here is that they are relativistic products of 
beta decay from the same fundamental rotational oscillation, the neutron.   
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Dynamic Functions 
 
To understand the dynamic functions of the above oscillation, we can start by examining 
the functions of an ideal string in “jump rope” oscillation, i.e. a standing wave of one half 
wavelength, shown below.  The subscript noughts in the parameters indicate their 
fundamental characteristic values, which are properties of the resonance of the wave 
bearing medium.  The oscillation in this case is of Simple Harmonic Motion, so there are 
no harmonic overtones traveling along the string, which is of some linear inertial density, 
l0, and some tension stress force, t0, given by  
  (2.64) 
where f0 is the tension stress and A0 is the unit cross sectional area.  This is related to the 
resonant angular frequency, w0, and commensurate angular wave number, k0, and 
velocity of the strain oscillation, c0, as  

  (2.65) 

When normalized,  

  (2.66) 

and in an isotropic space, for a unit value of x0, 
  (2.67) 
Therefore, what may not be so obvious, but assuming the units of distance r, in A and in 
k are the same, for q = 1, 
  (2.68) 
Also, of eventual interest, the mechanical impedance, Z0, of the string is  

  (2.69) 

and the power, P0, transported by the wave, if it is a traveling wave, and hence retained if 
it is standing is 
  (2.70) 
 
 
We can represent the oscillation with the Euler identity, using both the real and imaginary 
parts, as a complex standing wave, f, where , and , 
  (2.71) 
so that for any time, t, and where A is a real amplitude, (not the cross-sectional area A0 
above) equal to the maximum radius of the string path and modulus of the complex polar 
form, r, 

 . (2.72) 

 
The ambiguity of the rotational sense is once again used, since in the case of a 
conservative or closed SHM where there is no damping or loss of energy of the system, 
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time is cyclical and reverses with each half cycle of the oscillation.  This also reflects the 
fact that what is clockwise on one side of the path is counterclockwise on the other, the 
latter of which is shown below.   
 
We will stipulate that the phasing of f and q  remain synchronized so that at time t = 0, 
the oscillation is at the top of the cross section on the right, at h = A.  We can imagine 
that the cross section of the string, indicated by the small round circle at the end of the 
path radial, echos the path shown in blue below, maintaining the same orientation as the 
path, and if we imagine the path to represent the string cross section, that a density 
gradient resulting from the differential stretching of the string points along the radial 
from the small red circle through the center of the blue to its opposite side in the direction 
of increasing density.  Thus, a two dimensional entity confined in awareness to the cross 
section and whose orientation is locked in any arbitrary y direction, parallel to h, would 
notice a rotation of the density gradient and might think that it is he that is rotating or 
spinning about with respect to the direction of the gradient.  Thus to him the stress rotates 
while the strain oscillates in two orthogonal dimensions.  A one dimensional being would 
simply feel the stress oscillate between two poles. 
 
We can next think of the cross section of the string as reaching toward infinity, so that the 
displacement of the string is instead seen to be a lateral or transverse strain of the 
continuum in oscillation in two dimensions from and about its position of rest at the 
center of the path.   
 

  
   Wave Diagram 3 – Simple Harmonic Oscillation of f 

The usual kinematic functions of the oscillation can be given for f, just as it was for h in 
Wave Diagram 2 above, assuming the ccw rotation as shown above, as 
 
Displacement, r  (2.73) 
Velocity, c  (2.74) 
Acceleration, a  (2.75) 
Jerk, j  (2.76) 
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Due to our stipulation of conservation of energy, in a normalized system, where 
, we have the following equivalence of the integral, F(t), and j 

  (2.77) 

 
Their dynamic counterparts are: 
 
Constant of Inertia, t(tav)  (2.78) 

Transverse momentum, G0  (2.79) 

Transverse wave force, t0  (2.80) 

Transverse wave yank, Y0  (2.81) 

 
Some explanation is in order.  Given a fixed w0 according to (2.65) and a fixed m, it is 
apparent that these functions are invariants of the system.  (2.80)appears to be an 
expression of Hooke’s law of force for simple harmonic motion generally given as 
  (2.82) 
where the spring constant, kspring, includes a constant value for the mass, m.  In this case, 
f is substituted for h, with its magnitude a constant as a complex modulus, its instant 
direction given by the argument.  Thus it is a scalar invariant, as is t0.  Since the only 
difference between (2.80) and the other three functions are the powers of w0 and the  
directional change given by i, they are themselves all scalar invariants under rotation and 
translation.  Since A = r, and since the displacement of r in fyz is normal to the direction 
of kx for any time t, the imaginary sense is entered, (2.78) becomes  

  (2.83) 

and  

  (2.84) 

 
which we can substitute the last term back into (2.79), (2.80), and (2.81), resulting in the 
final term of each.  For an arbitrary fixed reference frame,  varies sinusoidally, but 
for a frame rotating at w0, with the complex modulus, is constant and at unity when 
divided by . 
 
Thus mass is essentially the inverse wave modulus and the transverse wave number.  
(This latter should not be confused with what we might call the “amplitude wave 
number”, A-1 = r-1, which for the fundamental oscillation is the same as the wave number.  
Thus the neutron is an essentially spherical wave form, while the electron can be modeled 
in one of two alternatives as an extremely thin prolate spheroid wave form transmitted by 
the central oscillation at beta decay, whose major axis, pke-1, exceeds its minor axis, re, 
essentially by their ratios of 1.334775525…x106.  The neutron is then transformed into 
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an oblate spheroid wave form of the proton, whose major axis exceeds its minor by a 
factor of 1.000000895… .  This will be shown later) 
 
 The left hand identity of each is a compact and convenient notation for each invariant, 

, where the subscript indicates complex differentiation and the superscript indicates 
complex integration, the right hand side with respect to time and the left hand side, not 
yet used, for the same calculus with respect to space.  We can show these invariant 
functions graphically, and with the sense omitted, as  
 

    
    Wave Diagram 4 – Dynamic Functions of  f (t) 

 
The above discussion on the derivation of the wave form indicated that the rotational 
oscillation resulted after a  rotation about one of the h-axes with , which results in 
an orthogonal rotation of all six cubic axes.  This is reflected in the imaginary sense of 
(2.83).  Thus we can differentiate with respect to space and get the following. As with the 
rotations with respect to time, the rotations of space about the h-axes with  are cyclic, 
so that the first order of integration with respect to space is equal to the third order of 
differentiation.   
 

Constant of Inertia, t  (2.85) 

Oscillation mass, m0  (2.86) 

Linear inertial density, l0  (2.87) 

Moment of inertia, I0  (2.88) 

 
We can complete this picture by creating an orthogonal 4x4 matrix of the functions, using 
the inertial constant notation, in the second iteration of which we substitute integration 
for the third order of differentiation for both time and space, making . 
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  (2.89) 

 
More conventionally, this second statement becomes the following, where we have 
reiterated the power function as conventionally stated on the right.  It is of interest to note 
the orthogonal nature of the matrix by the sense of each function, and that the inertial 
constant is inherently an imaginary invariant, so that making its sense explicit would 
effectively rotate all the functions clockwise , from their positions as follows. 

  (2.90) 

 
The additional 9 functions are: 
 
Mechanical Impedance, Z0  (2.91) 
Transverse Momentum Surface Density, G2 
  (2.92) 
Planck’s Quantum of Action,   (2.93) 
(Spin Angular Momentum) 
Linear Transverse Force Density, t1  (2.94) 
Wave Stress, f0  (2.95) 
Spin Energy, E0  (2.96) 

Mass Frequency Ratio,   (2.97) 

Yank Surface Density, Y2  (2.98) 
Wave Power, P0  (2.99) 
(Yank Volume Density, Y3)  (2.100) 
 
These derivative functions for a fundamental rotational oscillation, the neutron, are 
invariant functions of the resonant frequency, , and wave number, , of the 
continuum and not of any linear dimension of space or time.  These latter two time and 
space parameters serve to gauge the interaction of the various functions and in fact to set 
the gauge, which is also the basis for the metric, for space and time itself.  We can show 
this in greater detail in the orthogonal matrix that follows.  The functions are 
instantaneous vectors, which together form a rotational tensor or spinor.  The functions 
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with asterisks, all of which are of real sense, are primary invariants of the system.  Thus, 
while all are invariant with respect to the fundamental oscillation, with beta decay, for 
example, E and m for the central oscillation changes, though not for the system as a 
whole, which is conservative.  The primary invariants with multiple asterisks can be more 
readily seen as properties of the continuum itself, with the single asterisks indicating 
invariants of oscillation, but all are rightly seen as spin potentials of the continuum.  The 
primacy of the multiples is seen in (2.68) which is an expression of these four describing 
the necessary conditions for wave motion. Thus 

 , (2.101) 

while generally unrecognized is 

  (2.102) 

or diagrammatically 

 . (2.103) 

A similar condition with respect to the action, impedance, power and mass/frequency 
ratio is  

  (2.104) 

Among the secondary invariants, those whose magnitudes for a given particle vary from 
the fundamental, but whose relationships are still gauged as with the primary invariants, 
we have one involving the well known equation of Einstein,  

  (2.105) 

In fact, the coupling between t0 and f0 gauges the gravitational interaction, as the 
quantum of gravity is given 

  (2.106) 

  (2.107) 

where, by virtue of the spin mechanics of , the isotropic 4-stress, T0, operates on one 
pair of diagonal h-axis, at an angle of 0.615479…, relative to the six cubic faces (and 
normal to any three ortho-normal co-ordinates of a 3-space,) so that  
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 and  (2.108) 
 . (2.109) 
We can state the relationship between the spin functions and that 4-stress as 
  (2.110) 
Here 2Tµn is the 4-stress correspondence of the 3-strain component in (2.59)-(2.62), and 
4p integrates the surface stress oscillation over a spherical surface over one cycle.   Since 
tµn is a geometrically defined set of functions as developed above, this is a background-
independent quantum solution to the field equations of general relativity. 
 
The following orthogonal matrix is the multi-faceted jewel of this rotational oscillatory 
system.  In addition to the above functions, there are two others shown in the bottom two 
spots of the next to the rightmost column.  Y, not to be confused with yank, Y, is the 
tension or Young’s modulus of elasticity of the continuum, while the function under it is 
the inverse of the Planck area.  Notice that it is gauged by the same general derivative, 

, with the stress f0, as the stress is with the transverse, and in the case of the rotational 
oscillation, central wave force, t0.  Thus the Planck area, from (2.109), is expressed as a 
derivative of area with respect to stress, similar to gravity at (1.23d) or 

 (2.111) 

Of similar interest is the relationship of the mechanical impedance with respect to 
Planck’s quantum as  
 . (2.112) 
Finally, the functions  and G are gauged by , where G0 is related to the quantum of 
charge, e, by 

 . (2.113) 

thus 

 . (2.114) 

The ratio of the gravitational quantum and the charge quantum, then is  

  (2.115) 

The invariant functions, then, are seen to be invariant differentials and the various 
instances of , are their co-variant derivatives.  Related to this is the fact 
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 Matrix of Invariants  
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that, as indicated by the prefix noughts, the fundamental values of these functions 
constitute a system of natural dimensional unit values.  Thus we have the following SI 
equivalents for the derivatives, imaginary sense omitted, along with the inertial constant, 
where q is understood to be 1, which are the fundamental units of space and time, though 
they are obviously not quantum in the conventional sense of being discrete and 
indivisible.  They represent, instead, the classical foundational parameters of the quantum 
world. 
  (2.116) 
  (2.117) 
  (2.118) 
 
This matrix can also be represented to advantage by the following spin charts.  The first, 
labeled, Right Hand View, Right Hand Rule, can be thought of as being prior to a strain 
and hence oscillation and is marked as at time t = 0.  All time functions of  are fixed 
in the same direction and therefore in phase and all space functions of  are arrayed 
together in sequential order with a counterclockwise rotation of the cycle starting at the 
left or 9:00.  This represents a spin potential, analogous in some respects to a vector 
potential.  

    
     Spin Chart 1 – t = 0, RHV/RHR 

   
We can imagine an X cut along the 45 degree lines through the center of the circle which 
is lying in an x-y plane. (Assume the top of the page is initially in the +x direction for 
reasons that will become clear.)   
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1. Pull the bottom arrow head of , which is pointing up toward +x at the center 

point, toward the –z direction, down out of the page, and pull the top arrow head 
of , which is pointing down at the center point, toward +z, so that the circle is 
now in the y-z plane, facing in the –x direction.  

a. Now, the vectors  will be pointing up and P down, Z up and  down 
(and facing away from you) all having undergone a +i or  ccw 
directional rotation about their group source or origin (viewed toward the 
center from the +y direction). 

b. This transformation performs an axial +i rotation of the remaining vectors 
of their groups, E and I for  and t1 and m for , along with a 
simultaneous cw orbital rotation about the y axis.   

c. This also produces a -i axial rotation of t-t of  and f-l of  and a 
simultaneous directional -i rotation of Y-G and Y2-G2 about the y axis.  

As a result, all the vectors will have undergone either an axial, axial/orbital or a 
directional rotation. 

2. Simultaneous with (1), but second in a non-commutative order, in group  pull 
the arrow head of t which is pointing right at the center point, toward the -z 
direction (down out of the page) and in group  on the right pull the arrow head 
of f, which is pointing left at the center point, toward the +z direction.  The 
tendency or differential effect of this transformation, which is similar to (1), is to 
place the circle in the x-z plane, but this is in conflict with (1) which puts the 
circle in y-z.  Since  is the spin angular momentum vector, we will give it a 
differential precedence, i.e. first in a non-commutative order, but after the full  
directional rotation of (1) and of  and  about Y-G and Y2-G2, we end up with 

a. The transformation of (1.a-c) rotated –i about the z axis (viewed once 
again toward the origin from the +z direction) into the x-z plane. 

b. Now, t points outward toward +x and t inward toward -x, and l points 
inward toward +x and f points outward toward -x. 

c. This produces a +i axial rotation of Y-G and Y2-G2 along with a  –i orbital 
rotation about the z = -  axis. 

3. The result is that all vectors of the groups undergo both a directional and an axial 
rotation, though the differential precedence or sequence varies.  For the primary 
invariants, denoted by asterisks, of groups  and  the non-commutative 
sequence is (1)directional-(2)axial, while for groups  and  the sequence is 
(1)axial-(2)directional.  For the remaining components which meet at the corners 
of the square, there is also an orbital rotation along with the axial.  The sequence 
is the same as for the primary invariants of their group.  The result is Spin Chart 
2, the diagram of time t = n2p which is in the x-z plane.  Note that the primary 
invariants are all rotated in time with respect to diagram t = 0.   

 
With an actual kinetic model, in the initial condition, the RHV/RHR label on each group 
square will be facing out, all right side up.  In the final condition the model would be 
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viewed on edge, with the right hand labels all facing to the right, but with the top and 
bottom square labels inverted and the left hand labels facing left, and similarly oriented. 
 
To complete the symmetry of the picture we can also show a Left Hand View, Left Hand 
Rule in Spin Chart 3 that would be applied to the back of the RHV/RHR diagram.  It can 
readily be seen that if you place the LHV/LHR, centered on the back of RHV/RHR and 
invert it 180 degrees, all the functions will line up back to back with each other.  
However, as we have stipulated that Spin Chart 3 follows the left hand rule, we will not 
invert the diagram, so that after the above operations are performed, the spin vectors are 
correct, so that  and their physical rotation representation is the same, i.e. 

 is ccw and  is cw when viewed from the vector arrow toward the center of the 
configuration.   

    
    Spin Chart 2 – t = n2p, RHV/RHR 

 
The result of this juxtaposition shows that Spin Chart 2 corresponds with the condition in 
Spin Diagram 1, at the +y position at the cross of the +y path.  Spin Chart 4 corresponds 
with the similar position on the –y path.  Both charts are viewed from the direction 
toward which q is rotating at the +y and –y crossing.  This corresponds with the condition 
found at Figure 2, in the section on EM waves. 
 

RHR LHR= -! !
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    Spin Chart 3 – t = 0, LHV/LHR 

    
    Spin Chart 4 – t = n2p, LHV/LHR 
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Quantum Rotational Oscillation or Spin 
 
We can create a simple physical model of this condition, albeit in 2-D mode, using a 
flexible drumhead or a planar frame such as a crochet hoop over which we stretch a thin, 
flexible membrane.  Pierce the center with a machine bolt with washers, head up and 
tightened so that it cannot slip in the opening, and preferably of greater length than the 
radius of the hoop.  Fold the length of the bolt, representing the X axis, up against the 
bottom of the membrane or hoop and rotate the distal end around the hoop’s circumference, 
allowing the bolt to slip and rotate freely in your loose grip.  In the following, the lower 
case letters, x, y and z, refer to physical points originally in the undisturbed reference plane 
but now subject to displacement or strain and the upper case to the physical reference 
frame, X, Y and Z or to a functional point on the path of the strain, K, V, M, E, and W.   In 
these graphics, the X, Y and Z axes have been rotated +i from their customary positions, 
which amounts to a  ccw rotation about the XYZ diagonal.  Thus +V-z indicates point –z 
displaced to functional point +V.  +K-z indicates –z at K moving in the positive direction, 
toward +V.  We will reference Wave Diagram 1 in this discussion. 
 
The disk, f, (+, originally up) and (–, originally down), formed by the bolt head and washer 
will now be roughly perpendicular to its original position in the plane of the membrane and 
hoop, q, (+, up) and (–, down). The bottom edge of the disk, which we will call point –z, 
will be depressed to a point we will call –V-z , while the point across the diameter at +z will 
be elevated to +V+z.  The point –y clockwise  from –V-z on the edge of the disk and in the 
plane of the membrane, we will designate at –iK-z = K-y, and the diametrically opposed 
point +y on the disk we will call at +iK-z = –iK+z.  
 
As we move the bolt distal end +iq + (counterclockwise ½ p) around the hoop, the bolt 
head and adjacent membrane will rotate –if+ (clockwise ½ p)), as would be indicated by an 
axial vector pointing with the bolt along the bottom side of the distorted membrane.  The 
sense subscripts indicate the side from which the rotation is observed.  Point –z will move 
up in the direction of the plane of the hoop, –if+, but +iq +  to point +K-z in the plane of the 
hoop.   Simultaneously, point +z moves down toward the hoop plane, once again –if+, with 
respect to the disk and +iq +  with respect to the hoop to point –K+z.  Another ccw ½ p 
rotation of the bolt around the hoop carries –z up to +V and +z down to –V, once again 
with cw motion around the disk and ccw motion with respect to the hoop and +V.  A third 
ccw ½ p rotation of the bolt carries –z down to –K-z and +z up to +K+z in the Y-Z plane.  A 
fourth such rotation returns carries –z and +z to their initial displaced positions along the X 
axis.  Note that both q and f undergo a full rotation, yet continuity is maintained with no 
twisting up of the medium, in fact, it occurs because the medium will not allow such 
indefinite distortion.  The matrix in (2.61) describes this condition. 
 
Note that this motion brings together functional point -iK-z and physical point –z from 
functional point –V-z to a rest or undisturbed point –Z = +K-z, simultaneously with +z to 
+Z and +V+z and –iK+z together at –K+z.  It also indicates the following conceptual spatial 
and time identities  
  (2.119) 
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and  
 . (2.120) 
 
Clearly, –Vf and +Vf are two stable or observationally static functional points comprised 
of the constant physical flux of f over one rotation of q, while –Kf and +Kf  form two 
iterations of a moving functional Kq path around the –Vf  – +Vf axis in the q plane 
comprised of the successive points of f while at momentary physical rest.  Thus, each 
point of f coincides with a unique V once and a unique K twice with each cycle of q.  In 
terms of simple harmonic motion, the potential energy function of V, which we might 
surmise is also the energy of quantum static electrical charge or the electric field, is 
comprised of the continuum’s sustained displacement-strain created by its oscillatory 
motion, while the kinetic energy function of K, the quantum manifestation of the energy 
of a magnetically induced current, is comprised of the sustained maximum momentum 
created by continuous change in rest position.   
 
This is in keeping with Wave Diagram 2 in which the position of zero displacement 
corresponds with the instance of greatest momentum and zero acceleration and force. It is 
also what (2.101) would appear to indicate, since l0 is the inertial density, a function of 
position, f²(x), and t0 is the tension force, a function of time, f²(t), of the spacetime 
continuum, as   
  (2.121) 
          .         
Wave Diagram 1 assumes a point wt1 < ¼ p.  At t0 = 0, +z was aligned with the X axis, 
and f was aligned with the X-Y plane, normal to the plane of the paper.  Rotation of q 
brings +x and the y-z orthogonal axes to the positions shown by the small red disks and 
radial lines within f.   The bold X superimposed on f is the congregation of the –M, -E, 
+M, and +E functional lines shown in Wave Diagram 2, and is the analogous condition 
for the quantum oscillation, in this case all being cotemporaneous in space as shown and 
rotating in time around the X axis.  As will be shown in the spin diagrams that follow, the 
cross product of these vectors and their initial position in the Y-Z plane, operating through 
the stress-strain function, results in the creation of a wave guide at the points W+x and W-x 
(the latter not shown in the diagram) which is the boundary of the permanently rotated 
axis of wave travel.  Such wave guide is seen to be earlier as the operation of . 
 
At the moment of the diagram, t1, the ends of the X on the circumference of f represent 
the displacement of points +z¢, +y¢, –z¢, and –y¢, each f(¼ p – t1) less than +z, +y, –z, and 
–y.  At time t(¼ p), these last four points will have rotated that amount in f and points +x 
and –x and the ends of the power cross, X, will have rotated a corresponding amount in q  
to the points –M, –E , +M, and +E shown.  As the wave speed for q and f is identical 
over the short term for a free quantum waveform, i.e. the neutron, and indefinitely under 
certain inertial conditions of atomic nuclear congregation, +x and –x constitute an 
effective boundary of the wave.  Implicit in this model is that heat and friction is wholly a 
transfer of kinetic energy and momentum among separate quantum waveforms through 
translational, i.e. Brownian, motion and is not an operant condition of individual wave 
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dynamics, thus there is no damping involved except as a boundary condition due to stress 
and strain at +x and –x as it might effect the fundamental eigenvalues, k0 and w0.  !
!

Spin Diagram 1 shows another view of this condition, this time with the path integral of 
an arbitrary point +y over time, where the arbitrary y-z axes are indicated by the red and 
yellow broken lines at time, t = 0.  Instead of the contemporaneous M-E power axes 
shown in Wave Diagram 1, however, we have the same positions in sequential order for 
+y, which is at rest at the functional point K at t = 0 at the instant of the diagram as 
indicated by the rotation arrows for q and f.  As q rotates +2p as indicated at +X, and f, 
–2p  at +x, (instantaneously +i at +Z in the diagram), +y will etch a figure 8 path, passing 
in sequence through 8 equal time segments of ¼ p, through functional points –E, –V, +M, 
+K, +E, +V, –M,  and back to –K.  A continuum of other radials around the 
circumference of q will do likewise, each ¶f/¶q from the adjacent ones.  Four such paths 
of two orthogonal axes, of which +y is one component, are shown.   
 
The path of each radial is broken into four ½ p phases, two capacitive and two inductive 
as shown, the capacitive phase always on the leading side in the direction of rotation of q, 
and the inductive side always on the lagging side counter to the direction of rotation.  
Each such phase can further be seen as dominated by the kinetic energy of rotational 
oscillation between K and E for the capacitive and between K and M for the inductive 
phases and by the potential energy of displacement/strain between E and V and between 
M and V.  The sine of the torsion strain angles, e and µ, between K-0-E and K-0-M is  
with a cosine of ½, indicating an angle of 1/3 p , while the sine and cosine of the angle 
between each of the power points and the plane of q at the center is , indicating an 
angle of ¼ p.  The sine and cosine of the angle between each plane of K-0-E and K-0-M 
and the plane of q at the midpoint of the radial 0-K is  and , indicating an angle of 
.9553166, and an angle between the planes of angles e and µ and the X axis of .6154797.  
 
It bears emphasizing that the cross products, K´E and K´M, used in the following 
development and the corresponding diagrams represent the wave strain and are between 
the rest points with zero angular wave strain, K, and the points of strain at maximum 
instantaneous power, M and E.  With respect to Spin Diagrams 1 and 2, this strain is 
balanced in resonance between the capacitive and the inductive phases.  With the 
remaining diagrams, which involve a rotation of f within q and the Y-Z plane in the case 
of Diagrams 3 and 5 and an inversion of one axis in the case of Diagrams 4 and 6, one or 
the other of the phases predominates, indicating a sustained capacitive or inductive state 
of the wave.  We would expect the predominant strain due to cosmic expansion to be a 
sustained inductive state or conversion of potential to kinetic energy, just as we might 
expect a capacitive state in association with a sustained condition of overall or local 
cosmic contraction. 
 

3
2

1
2

2
3

1
3



 75 

 
Spin Diagram 2 – Neutron 

 
!

Spin Diagram 2, top figure, shows the oscillation at a point in time, t(0) = -K, for +y, 
shown as -K+y with the instantaneous power moments of -M-+M and -E -+E.  At time 
t(0), these moments, shown by the dark cross, are not the active moments, the latter of  
which would be, as always, in the f plane, if they were shown.  Those shown are instead 
the positions to be reached by the strain/displacement of the y-z axes when they reach 
those physical points and assume those functional positions.  The bottom figure shows 
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this momentary assumption.  It represents a point at t(¼ p) where +y and +z have rotated 
from the readers perspective -¼ p to  -E+y and -M+z respectively in f.  Boundary nodes 
W+x and W-x and therefore f have rotated +¼ p in q.  In the top figure, the tangential 
velocity, , and thus momentum is at a maximum at the two poles of -K+y and +K-y, to 
be followed at t(½ p) by the maximum for  at -K+z and +K-z.  The maxima, then, 
rotate with f about q, ½ p out of phase from the W’s.  The rotation of q creates a spin 
angular momentum vector, SL, shown at +X. The power moments rotate with q, at the 
same angular frequency and at the same phase position.  Due to the steady state dynamics 
of the quantum oscillation, we can assign a particular dynamic component, i.e. force or 
momentum in equal measure or one quarter of the total to each of the power moments, as 
in the following.  
 
The torsional strains, e and µ, each crossed from the rest position to the extremum, create 
a torque on each side of the oscillation which is shown by the axial vectors Ce and Lµ  and 
which can be described as  
  (2.122) 

  (2.123) 

  (2.124) 

  (2.125) 
  
The i’s, as orthogonal sense, arise naturally in the crossing process, as in .  These 
torques rotate in concert with the torsional strains and with q.  The torques are 
represented by the (active) h-axes detailed above and travel at the same angular velocity 
as q and f.  It bears noting that while both Ce and Lµ are shown according to the right 
hand rule, the force embodied in the strain at M is decreasing, while the momentum is 
increasing.  At E we have the opposite case, where the momentum is decreasing while the 
force is increasing.  The rotational sense of both vectors is in the direction of increasing 
force, forward in time for E and backward in time for M.  From the point of view of 
motion, however, the rotation at Lµ is clockwise and would be represented by a left hand 
axial vector.  This is in keeping with the left hand rule for induction.  If we assume that 
Lµ is the direction of the magnetic field and cross it into the flow path between M and K 
on the spherical surface, the product, a force vector, will be in the direction of the 
oscillatory center. 
 
The sum of (2.123) and (2.125) is a complex function of f, in which we find the 
dimensions of spin energy, E0, and in fact it is the spin energy of the system, which with 
complex integration with respect to a quarter cycle of time gives us the spin angular 
momentum as 

 . (2.126) 
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Had we started with the momenta of the moments being used, instead of the force in 
(2.122) and (2.124), we would have arrived at the action directly since dotting the 
momenta into the inverse wave number effectively integrates the momenta.  Thus, instead 
of (2.123) and (2.125) we would have 

  (2.127) 

  (2.128) 

  (2.129) 
 
Vector µ is the effective magnetic moment vector of the oscillation which is the time 
averaged direction of Lµ.  Vector B is the generalized direction of an assumed magnetic 
field.  Were B of sufficient strength, Lµ would align with B, and SL and µ would precess 
around B in the same direction as q, which is in the direction indicated by Lµ as a left 
hand vector of motion.  As shown in the phasor chart to the left of the diagram, in which 
the spin vector points toward the reader and the +X direction, C leads L by ½ p.   
 
Torques Ce  and Lµ  in turn exert an equal shearing strain as shown by the small arrows 
on the f boundary nodes W+x and W-x, and at +V and –V and again at the intersections of 
f and q, which we will call K0 (between -K+y and -K+z in the top drawing) and Kp.  The 
three charts labeled “C-L Torques” show the condition at +V, K0 and W+x, all as viewed 
from the exterior of the oscillation.  The three antipodes of these, -V, Kp and W-x, would 
be mirrored along the horizontal (with respect to the page) rotation vector of each chart, 
the rotation vectors being tangent differential components of the corresponding axial 
vectors.  The six nodes/antinodes create a wave guide and boundary that works against 
the recoil of the strain from the x axis to the X axis.   
 
The cross product of the small shear arrows, therefore, corresponding to Lµ and Ce  as 
indicated at W+x and W-x, form a charge vector (not shown) of relative magnitude 2/3 at 
each W, which is aligned with the f rotation vector shown, its direction determined as 
indicated in the following section on charge generation.  At the intersection of q and f the 
shear vectors cancel and the charge vanishes.  In the case of resonance, as shown in Spin 
Diagram 2 for the neutral state or that of the neutron, the capacitive and inductive phases 
are balanced and there is no net charge force on the boundary nodes.   
 
In an inductive state, that is, in a mode of discharge and current generation, the induction 
torque is predominant.  This corresponds with a phase advance culminating in a +i 
rotation of q in the Y-Z plane, a long term physical increase in the rotational strain in the 
direction of spin. It is a release of kinetic energy over and above the normal oscillatory 
kinetic energy.  This would be indicated by crossing the induction shear arrows into the 
capacitive shears at W+x and W-x, which in the case of Spin Diagram 2 would be anti-
parallel to the f rotation vector, and which would indicate a positive charge vector at the 
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W+x boundary.  With respect to Lµ as a left hand vector with respect to motion, the 
direction of motion of the µ shear vector will be reversed, which creates an unstable 
condition at W+x and W-x over time. 
 

 
Spin Diagram 3 – Proton 

 
 
The resulting condition, as shown in Spin Diagram 3, is that of the positive charge 
oscillation or the proton. The vantage point of the reader is shifted 90 degrees as 



 79 

indicated by the f rotation vector which now aligns with the –Y axis in the top figure.  It 
is noted also that the power moments and their strain angles µ and e have shifted +i in Y-
Z.  In the bottom figure, the effect of this advance is to flip Lµ into the upper hemisphere 
where it continues to trail the capacitive vector by –i and now trails W+x.  The result is a 
change in the shearing vectors at W+x and W-x such that the charge vector is now aligned 
with f, with all the torques in general alignment with the rotation of q, as indicated by SL.   
 
The phasor chart reflects this condition, with the capacitive vector continuing to lead the 
inductive, but with both in general alignment with the spin vector.  The magnetic field 
vector B is now inverted from the position in Spin Diagram 2, to indicate that if activated 
as shown, Lµ would tend to align with it and SL and µ to precess around B, once again in 
the direction indicated by Lµ.  This indicates that if our perspective of observation is 
stationed by the direction of B in the transition between Diagram 2 and 3, the result will 
be a reversal of the direction of q and a flip of the spin and capacitive vectors.  This can 
be seen with a little effort by viewing Diagram 3 upside down and “looking up” at q.   
 
As might be imagined, this indicates an instance of beta decay.  The generation of a 
charge vector at W+x involves the transmission of wave energy past the boundary node in 
the form of a reflected negatively charged oscillation which constitutes the electron as 
shown in Spin Diagram 4.  The predominant amount of the energy is transmitted from the 
medium as potential to the oscillation as kinetic with the resulting altered resonant 
frequency of the proton.  The quantification of this process will be shown in a minute.   
 
In Diagram 4, it should be noted that the reference grid shown is one half rotation from 
that shown in Diagram 3 to facilitate the viewing correspondences between the two.  This 
is shown in the Phase Orientation chart at the left center of the diagram.  Both diagrams 
share a common orientation for B.  It is immediately apparent that the spin vector must 
flip from that of the proton as shown to provide continuity of the reflected wave.  It is 
noted that the resulting oscillation involves an inversion of the y axis, while the x and z 
axes retain the same orientation with respect to their rest positions as does the neutral 
oscillation.  Although Diagram 4 and related Diagram 6 are shown as spherical, the 
amplitude and inverse wave number for these oscillations are in fact not equal.  While 
both amplitude and wave number and the covariant frequency are proportionally and 
equally smaller for the reflected oscillations, as differentials they have different physical 
interpretations. The amplitude is much smaller than that of the nuclear fundamental 
indicating a smaller size of the electron, while the equally smaller wave number that we 
will see is associated with the reflection would suggest a much elongated waveform with 
a proportionally reduced frequency.  The inversion then indicates an inverted node, as the 
kinetic distal end of the reflected oscillation, which is encountered observationally as the 
electron orbital or cloud.  The likelihood that this configuration involves an extension 
into a fourth-dimension should not be discounted, in which case the spherical form could 
be maintained.   
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Spin Diagram 4 - Electron 

The shearing vectors all point against the direction of spin indicating a negative or 
receptive charge, a capacitive or charging state of the oscillation.  As before in the 
presence of a magnetic field, the alignment of Lµ with B results in a precession of SL and 
µ.    
 
The subject of reflected and transmitted oscillations with charges reversed, i.e. anti 
matter, is straightforward.  Cosmic expansion is clearly the conversion of potential to 
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kinetic energy, the energy of position to that of motion.  This could not be more evident 
than in the notion of a “big bang”.  The natural state for an oscillation under this 
condition is that of conversion of potential to kinetic energy, of electrical field potential 
to magnetically induced current.  It is this condition that accounts for the experienced 
predominance of matter over anti-matter.   

 
Spin Diagram 5 – Anti-Proton 

 
Spin Diagram 5 shows the condition of a fundamental oscillation of the anti proton in the 
capacitive state resulting from the generation of a negative charge.  Returning to Diagram 
2 for a moment, if we cross the capacitive shear at W+x and W-x into the inductive, the 
resulting charge vector aligns parallel with the f rotation vector, corresponding with a 
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phase lag and eventual -i rotation of q in the Y-Z plane, a long term physical decrease in 
the rotational strain in the direction of spin. It is a restoration of kinetic energy to 
potential energy over and above that normal to the oscillatory cycle.   

 
Spin Diagram 6 – Positron 

Note that the reader orientation of Diagram 5 is rotated from that of Diagram 2, ½ p in 
the opposite direction from that of the proton and is thus out of phase from it by a value 
of p.  The resulting lag results in a flip of the capacitive torque to general alignment with 
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the effective magnetic moment, µ, and an applied magnetic field, B.  The shearing arrows 
now all point counter to the direction of spin, q, indicating a charging or capacitive mode.   
 
Spin Diagram 6 shows the state of the positron, a wave reflected at the boundary node at 
W-x in Diagram 2.  It is analogous to the electron except for the reversal of the capacitive 
and inductive vectors, and hence the charge.  As a result, it is in an inductive state and the 
shearing vectors all point in general alignment with the rotation of q.   
 
With respect to the nomenclature of “reflected” and “transmitted” waves, they have been 
chosen for historical reasons having to do with the transmission of power of a traveling 
wave at a discontinuity.  This treatment is used subsequently within the context of a 4 
dimensional continuum.  We can think of the neutron, proton and anti-proton as 3-
dimensional transmissions of a 4-D wave, where the electron and positron are reflected as 
the result of an impedance change.   
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Generation of Charge 
 
The following tables outline the dynamics of the quanta shown in Spin Diagrams 2 – 5 
with respect to the generation of charge.  The tangential and centripetal acceleration 
attributed to each of the torques Ce  and Lµ at the six nodes is given by the dot product, in 
the case of tangential, or the cross product, in the case of centripetal, of shear vectors e 
and µ and the rotation vectors, q and f.   
 
In these tables, the small circles, filled and unfilled, preceding the values in columns 4-7 
refer to the centripetal or counter-centripetal sense respectively, arising from the cross 
product operation.  The specific choice of the options of q and f in columns 1-2 and 5-6 
is determined by context with respect to the “C-L Torques” charts as shown for each 
node2 in the diagram designation column.  Columns 1-2, 4-6 give the values of the 
products without modification by the value of the torque involved, while column 7 is so 
modified.   
 
A cursory glance at the tables and the diagrams will provide ample indication of a 
quantum structure that has corollaries with the quark and chromodynamic modeling of 
the standard theory.  In particular, a physical basis for fractional electrical charge 
suggests itself and that for asymptotic freedom is more assertive.  The nodes, while 
hardly rigid, as aspects of a discrete wave would be anticipated to register and transfer to 
any observational media the interactions of inelastic collision and scattering.  Obviously, 
however, they are inseparable as aspects of an overall oscillation, and hence convey the 
quality of “confinement”.   
 
In the spin diagrams, the tangential rotational path of q, as distinct from its axial vector 
representation, SL, is the locus of sustained kinetic energy, tangential momentum and 
velocity and the electrical equivalence, current.  The E moments transfer this 
velocity/current via the elastic strain of the medium to the static point of maximum 
potential or electrical amplitude at +V and –V, thus charging the electrical field of the 
system.  ( The whole oscillation is, of course, free to rotate in space, but for any short 
term series of oscillations, these points can be considered static.)  The potential or 
electrical charge energy of +V and –V present in the strain is converted by recoil or 
restoration of that strain to kinetic or velocity/current via the M moments.  The vectors e 
and µ both point in the direction of increasing strain, but their direction over time is not 
the same.   
 
We can envision three general energy states of the oscillation, resonant, R, capacitive, C, 
or inductive, L.  In the resonant state, e points universally in the direction of the rotation 
tangent vectors, while µ points counter to those vectors, indicating the characteristic 
phase lead of e and lag of µ for current with respect to potential.  In columns 1 and 2, the 
dot product of these vectors and the rotation vectors cancel, indicating no net change or 
acceleration of the latter and a general condition of resonance, as indicated in column 3.   
 

 
2 As determined by context, the term node is used as a general term to include the category of antinode.  
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Spin Table 1 – Inductive State, Ordinary Matter 
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Spin Table 2 – Capacitive State, Anti Matter 
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Note that there is no physical difference between the neutron and the anti neutron, in 
which the capacitive and inductive strains are in equilibrium, though this oscillation 
appears in each table to reflect the underlying symmetry of the system.  In Spin Table 1, 
it is embedded in an overall inductive state, as indicated by the vector operations at the 
top of each column, while in Spin Table 2 it is in an overall capacitive scheme.   
 
In the case of the cross product operations, the results are shown with the novel sense to 
facilitate the algebra with respect to the spin surface.  The crossing is done in the order 
outlined above for the inductive state of ordinary matter, that is, from µ to e, q or f and 
from q or f to e, and for the capacitive state of anti matter, from e to µ, q or f and from q 
or f to µ.  In this algebra, we have:    

         (2.130) 

         (2.131) 

         (2.132) 

         (2.133) 
In the case of the neutron, the cross products at each of the W nodes cancel, resulting in 
no net change in the oscillatory state, potential/kinetic, electrical/magnetic.  In the case of 
the proton, there is a net inductive change or positive charge along the axis of f, and a 
corresponding capacitive change or negative charge along the axis of f of the electron.  
In the case of the anti-proton, there is a net capacitive change or negative charge along f, 
and a corresponding inductive change or positive charge along f of the positron.  Thus 
the sense of the charge is positive if is parallel to  and negative if they 
are anti-parallel, the positive charge representing an advance of the tangential 
momentum, or inductance, and the negative charge representing a retention of that 
momentum, capacitance.  When  is of opposite sense to , they cancel, there is no 
net charge and a state of resonance is maintained.   
 
For the proton-electron pair and the inductive state, there is also a corresponding charge 
for each along the axial vector, SL.  Since these rotational and torque vectors are anti-
parallel, indicating a negative charge for the pair, according to the C-L torque diagrams, 
the charge for both is –i1.  They are complex, indicating their orthogonality.  For the 
capacitive state, charge summation is from the same potential nodes, but the spins, 
relative to e and µ, are reversed, leading to a reversal of charges or +i1 for the anti proton 
and positron.   
 
The square brackets for these charges indicate that they pertain to the +V and -V potential 
nodes, which with respect to the f oscillation are antinodes as are Ko and Kp.  These 
former are the general loci of the wave boundary of q, which has been rotated into the Y-
Z plane and forms the wave boundary and nodes of f at W+ and W-.  Any transmission of 
momentum and energy through the boundary at W+ and W- would presumably involve the 
perpetual strain between the X and x axes and thereby the +V and -V nodes.  The charges 
indicated at the latter, therefore, are not additional but are rather the complex expression 
of those at W-.  It should be noted that while we have assigned the charge to W- for 

( )1 1 1 2+ = +! ! !

( )1 1 1 2• • + • = +

( )1 1 1 2• + • = -!

( )1 1 1 2• + = -! !

µ e´ ( )µ e´+´

µ ´ e´



 88 

descriptive facility, the same charge can be applied to the opposite node.  We would 
imagine, however, that with beta decay the reflected oscillation which becomes the 
electron occurs at one or the other end of the fundamental x axis, i.e. in the vicinity of  -V 
or +V, along the X axis.  The direction of the axial vector f is not necessarily a 
directional vector for electron reflection, but rather the indicator of f spin for both 
particles at the time of transmission.  This wave transmission/reflection results from a 
conversion of the potential energy density of the continuum to the kinetic energy of 
proton-electron oscillation through a decrease in the continuum impedance.  It should not 
be ruled out that the electron wave in fact forms a spherical shell about the oscillation 
source, emanating from the two ends at -V and +V, with its amplitude as developed at 
(3.34) , and the shell as generally described in Spin Diagram 4. 
 
Ko and Kp are antinodes for both f and q and not candidates for the longitudinal energy 
and momentum transmission of beta decay.  This is indicated by the vanishing cross 
products,  and .  The products of  and  (and their anti matter 
counterparts), while not vanishing, cancel at each node, f to q for the resonant state, e to 
µ for the proton and anti proton, and with respect to both for the electron and positron.  
This last condition is a reflection of the apparent lack of internal structure of these last 
two particles.  The strain vectors e and µ at all of the nodes are capacitive for the electron 
and inductive for the positron, resulting in an isotropic charge condition registering from 
particle interaction.  In the case of the neutron they are balance between capacitance and 
inductance at each node.  In that of the proton and anti proton one or the other 
predominates, and some indication of internal structure can be registered from collision 
and scattering.   
 
Since a charge can be assigned to either node of f or q, we might surmise that the 
fundamental angular frequency, w0, associated with the tangential momentum be divided 
by p. Thus we can state a preliminary or raw quantification of the charge generated by 
the oscillation resulting in the process of beta decay, in light of  (2.127) as a transfer of 
linear momentum or 
   

 
  (2.134) 

where n0 is the cyclic frequency of the oscillation.  Conceptually, this reflects the fact that 
for each cycle of the fundamental oscillation, there are two phases of capacitance and two 
of inductance, two antinodes of maximum charge and two antinodes of maximum 
current. The ambiguous sense indicates the oscillation through both semi-cycles.  
Evaluation and comparison with CODATA observation is at (6.4) and (6.28).  If we make 
this an equation, based on this data, we have 

  (2.135) 

  (2.136) 
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where Z0 is the mechanical impedance of the continuum and G0 is the transverse wave 
momentum.  Addition of this factor is off the observed value by a factor of 
0.000014905…which we might compare with (1.12) at 0.000014648…. 
 
Pursuing this a bit further, we have 

 .  (2.137) 

In the next to last term, the inertial density times c is the mechanical impedance of the 
continuum.  In light of our prior discussion concerning the monad, or differential horn 
torus, it bears noting that if we transpose the p2 term to the left hand side, we have the 
form of the equation for the surface area of the horn torus.   
 
Further development, using the familiar identity for the fine structure constant 

      (2.138) 

and the permeability, µ0, and permittivity, e0, relationship 

      (2.139) 

shows 
  

 .  (2.140) 

It is noted that the value of µ0 is set by convention for computational facility in relating 
charge, q, (of which elementary charge, e, is an effective quantum) and current, 

, resulting in the exactness of the denominator of the next to last term.  Since 
the negative sense of the right terms above can be attributed to the current squared, it can 
be incorporated therein, canceling such sense in the charge squared term.  With reference 
to Appendix A, this suggests the transparent presence of a current squared argument in 
(2.140), for which the fine structure constant is a coefficient, since for one ampere2 of 
current, where the denominator on the right is in Newton,  

 .     (2.141)  

Thus (2.140) becomes  

      (2.142) 

Given the dimensions of t, and since 10-7 has the presumed units of force, the fine 
structure constant then, is dimensionless, yet may be the ratio of two forces.  If e has the 
units of momentum, then this would necessarily be the case and current would have the 
units of force, as .  Since the value of 10-7 is conventional, we would like to 
convert it to some natural expression of force, presumably related to cosmic expansion, 
as 
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 ,    (2.143)  

where we have transposed the current to give the square of the ratio of elementary charge 
to current and which will structure a¢ as 

 . (2.144) 

In combination with (2.134), (in which it is assumed that the preliminary factor of p-2 is 
included in k2) this gives 
   

     (2.145) 

in which the coefficient k is a normalizing factor, so that inverting we have the frequency 
differential arising from cosmic expansion and responsible for the generation of charge 

 . (2.146) 

This suggests and another look reveals that (2.140) is in fact a differential equation in 
which 
 

 , thus  (2.147) 

    (2.148) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2

7 210- e

e k
i

a a
w

æ ö ¢= = =ç ÷
è ø

t t t
t

2

2 710e

k aa
w -

¢ = =
t

2

2 2 2
0

1 1
e e

e
ki w w w

æ ö = = =ç ÷ ¶è ø

t

t

0 e
ik
e

w w¶ = =

( )
2

2 4 2 2

0

7 297352568 10  . ... /ie x Ca q
w

æ ö¶ ¢= = =ç ÷¶è ø
t t

0

270 1361239  . /ie C q
w
¶

= =
¶

t



 91 

3 - Cosmic Expansion as the Driving EMF of a Quantum State 
 
The Reactance States and Electron-Positron Generation 
 
In light of the above correspondence between the potential-kinetic and electrical-
magnetic energy cycles of the quantum spin, the cosmic expansion can be seen to provide 
a driving electromotive force or emf, E, which is necessarily tuned to the natural or 
resonant angular frequency of any local section of the 3-D cosmos.  “Necessarily” 
indicates that the 3-D tension in the 3-space surface of an expanding 4-core is a function 
of the inertial density of that 4-core, expressed as either energy or mass density as      
   

 ,    (3.1)     
where the volume inertial density, r0, is         
   
 .    (3.2)         
 
While the 4-core appears to have elastic properties, in keeping with (2.101) the decrease 
in inertial density arising from expansion leads to a decrease in 3-D tension.  At the 
boundaries of the oscillation, W+x and W-x, this results in a differential increase in the 
transverse wave speed and a differential increase in the amplitude A for f, with a 
concomitant contraction of the W+x-W-x axis and differential increase in the wave number, 
k0, in keeping with the gravitational quantum of (2.107).  If c is invariant, this indicates a 
corresponding increase in w0.  We have a paradox of sorts due to (2.101), however, in 
that a decrease in the inertial density requires a decrease in the wave force and of w0 over 
time, so that w0 at some future time t(p), becomes , where  for an 
inductive cosmic state, i.e. that of general expansion.   
 
While the continuum itself, in the field, and the oscillation in a state of resonance will 
retain the invariance of c, so that as functions of time c(t), 
   

     (3.3) 

we might surmise that within the boundary of the driven oscillation itself 

 ,    

 (3.4) 
where the delta indicates a variation in the frequency or wave number.   
 
With respect to a driving emf in an RLC circuit, the amplitude of the emf, E, is related to 
the current amplitude, I, by the impedance, Z, as 

      (3.5) 

where the impedance is 
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     (3.6) 
and R is the resistance, XL is the inductive reactance and XC is the capacitive reactance. 
 
In a condition of resonance, represented by Spin Diagram 2,  
    
    (3.7) 
and the impedance is equal to R and to the mechanical impedance of (2.91), 
    

    (3.8) 

Since we might reason that , (3.5) in a resonant condition can be expressed as  
    

     (3.9) 

where the current amplitude is equal to the speed of wave propagation.   
 
The inductive reactance, XL, is equal to the product of the driving frequency, , 
and the inductance, L, while the capacitive reactance, XC, is equal to the inverse product 
of the driving frequency, w0, and the capacitance, C, or 
     
 and     (3.10) 
     

 .     (3.11) 

The inductance then is the ratio of the wave momentum per wave velocity to the changed 
impedance of the expanding medium, arising from a change in resonant frequency 
squared, or changed force per wave velocity, 
    

 .    (3.12) 

The capacitance is the ratio of the fundamental mass as determined by the inertial density 
of the resonant and expanding medium to the impedance of the driving emf, or 
    

     (3.13) 

Therefore the inductive reactance, the ratio of the driving impedance to the decreased 
impedance of expansion, of the driving frequency squared to the decreased frequency 
squared, and of initial acceleration to subsequent acceleration, is 
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 .    (3.14) 

The capacitive reactance, the ratio of the driving impedance to the decreased impedance 
due to a change in wave number or the ratio of initial to subsequent wave numbers, is  

     (3.15) 

 
For an inductive state indicated by the above,  
    

 ,    (3.16) 

while for a capacitive state, 

     (3.17) 

For an expanding section of the cosmos, we would expect an inductive state to 
predominate; in a contracting section, we would expect a capacitive state.   
 
We might anticipate that for such an inductive state the following would be found for a 
half spin oscillation, 

    (3.18) 

Solving with the CODATA values of c,  per the evaluation 

section gives 
    (3.19) 
Some further algebra finds the following dimensionless ratios for the change in w and k 
of  

   (3.20) 

where the third ratio is that of the product of the inertial constant and the wave numbers 
of the driving oscillation and the driven resonant oscillation and the fourth is that of the 
mass of the neutron to that of the proton. 
 
The deviation of this derived theoretical ratio from the CODATA observed ratio is  
 . (3.21) 
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While this is slightly outside the relative standard uncertainty indicated for the observed 
figure, when it is coupled with the broad uncertainty assigned to the gravitational 
constant, which no doubt enters systemically into the observed computation and its 
deviation from the theoretical value herein arrived at of  0.000015019, as per (1.12) the 
correlation is significant. 
 
Of related interest is the following, where 

    (3.22) 

so that the quotient of the mechanical impedance and the relative change in fundamental 
frequency, Dw0, times Rm t is  

   (3.23) 

within a deviation of 2.9x10-8.  An identical result applies to the corresponding operation 
of the wave number, k.  The appearance of  once again suggests a 4-D relationship. 
 
The interpretation is that in the context of certain sufficient conditions of nuclear 
congregation and the confines of an inertial sink or font, the fundamental oscillation of 
frequency w0 and wave number k0 has an impedance matching the driving emf of cosmic 
expansion.  These fundamentals decrease slowly, but exponentially over time with 
cosmic expansion in keeping with the driving frequency, wd, which, along with the 
mechanical impedance, Z0, is a function of decreasing inertial density, l0, of an 
expanding cosmic 4-core.   
 
Absent such congregation or confinement, the fundamental oscillation responds as a 
driven wave to the resonant frequency of the local continuum, wp, which, along with the 
mechanical impedance, Zp, is a function of the exponentially decreasing inertial density, 
lp, of the expanding cosmic 3-surface.  We can think of the differential between wd and 
wp as either a time or space gradient, as it is a spacetime gradient.  The coefficient for the 
current amplitude of (3.18) arises from the rotational dynamics of the oscillation as 
outlined above, itself an expression of the 4-d orthogonality of those dynamics.   
 
While this accounts for the energy of the proton, we still have that of the electron to 
include in the equation.  We would anticipate that along with the transmitted energy of 
the proton, once again as a transitional state or conversion of the potential energy of 
inertial density to the dynamics of oscillation, there is a reflected component that 
accounts for the electron, as well as perhaps some other component that is accounted for 
by the neutrino in the standard model.    
 
With reference to the Appendix – Wave Transmission at a Discontinuity, which is a one 
dimensional ideal string model, since our equations make use of the linear inertial density 
of the medium we can use the final impedance terms in the equations to solve for the 
complex amplitude reflection, , and transmission, , coefficients or ratios, and for the 
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power reflection, , and transmission, , coefficients, which depend only on the 
properties of the medium.  The complex amplitude reflection and transmission coefficients 
are applied to the complex modulus of the fundamental amplitude.  The impedance for the 
driving cosmic core, Z0, and expanding surface, Zp, from above are   
   (3.24) 
 .  (3.25) 
and the above coefficients are        

 

 
        (3.26)

      (3.27)

             (3.28) 

 
           (3.29) 

resulting in the following evaluations.   
     (3.30) 
     (3.31) 
     (3.32) 
     (3.33) 
 
Applying the dimensionless coefficient,  to the amplitude = inverse wave number of 
the neutron, gives us an amplitude of the electron, Ae, as the reflected oscillation of  

 .  (3.34) 

 
Since the proton has no established decay rate, and we have shown that its energy, 
therefore its frequency, is a direct function of a decreasing cosmic inertial density, we 
might anticipate that , as with the other coefficients, is a differential or derivative of 
that decrease and of expansion.  With respect to (2.145) through (2.148) we still do not 
have a value for (2.146) or k itself, though we can find it empirically by the ratio of 
neutron to electron mass, which according to the CODATA values is  

 .    (3.35) 

 
We would like to find some mechanism, both on a quantum or intrinsic and cosmic or 
extrinsic level that would make the determination, since it is the value of this differential 
that determines k and a¢.  We discussed this previously at (2.55) to (2.57).  Recapitulating 
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from that discussion, the variation of the unit area arising from a change in expansion 
stress over time is 
 .   (3.36)
The first delta is a coefficient which references the number magnitude without any 
applicable dimensions or units.  The variance in the stress manifests itself in a fluctuation 
in the fundamental frequency and wave number of the oscillation over time within a limit 
that precludes transmission through the boundary.  At the time such limit is exceeded and 
transmission occurs, therefore, we would anticipate the following ratio and range to hold, 
shown here for the wave number, but equally applicable to the frequency,   

 .  (3.37)

While in linear proportion to the variance, the change in wave number would tend to be 
negative in an expanding medium or toward a smaller number, that is to a lower w and a 
proportionally lower k, if c is invariant.   
 
With reference to the energy of the system, we might imagine that while over time the 
kinetic and potential energy in resonance is balanced, at any instant the above variance 
may be in play so that the Lagrangian of the fundamental oscillation, where the kinetic 
and potential components cancel, is  
    (3.38) 
The Hamiltonian or total energy of the system, then is  
    (3.39) 
so that 

   (3.40) 

The variation on the left hand side represents the differential expansion energy, the first 
two terms on the right side are the neutron and proton mass-energy equivalence and the 
bracketed term is their difference.  Since the amplitude and the inverse wave number 
appear to be equated in the case of the fundamental quantum oscillation, we might 
imagine an analogy with respect to the reflected wave, with the understanding that the 
smaller amplitude indicates a smaller wave number for the reflection. Thus substituting 
the reflection amplitude coefficient for the difference in wave number/angular frequency, 
and using the variance from (3.36), gives a difference of   

  (3.41) 

 
From another approach, with respect to (7.139) in the appendix on exponentiation,  we 
might surmise that the acceleration normalizing factor represents a change in the 
Hamiltonian due to a dilative change in the time scale associated with beta decay,  
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     (3.42) 

so that canceling the dE terms from both sides, we have 
  and   (3.43) 

    (3.44)  
where 

      (3.45) 

With evaluation, we have 
     (3.46) 
     (3.47) 
where apparently  
     (3.48) 
Note that d is strictly a geometric derivation from (3.36) with no direct connection to the 
derivation of d¢ from (3.30), and that their difference is 
 ,    (3.49) 
a significant correlation.  A similar condition results where  is derived conceptually 
using (7.135) and (3.45) and independent of . 
 
This suggests that the following are invariants of the system, where  
  and     (3.50) 

 .   (3.51) 

 
From (3.39) and (3.40), where ke is the wave number of the reflected wave, we have  the 
following equations in terms of potential (3.52) and kinetic (3.53) energy, 
 . (3.52) 

  (3.53) 
Dividing through by the energy of the reflected wave, gives the coefficients of the 
driving, E0, and resonant/transmitted, Ep, energies, in terms of their wave numbers and 
frequencies, and finally of rest masses with respect to the fundamental differentials 

     (3.54) 

     (3.55) 

     (3.56) 
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By virtue of (2.83) and the CODATA values for the ratio of the neutron-electron mass, 
(3.35), and (3.51) expressed in terms of a fundamental unit value of d, we have 
 .  (3.57) 
where the CODATA value for the last term is 1836.15267261(85).  Expressing this ratio 
in terms of the fundamental resonant energy given by kp, wp, and mp, we have 

 .   (3.58) 

 
The deviation from the CODATA value for (3.58), then is  
 . (3.59) 
Alternately, working backwards from the CODATA value for (3.58) gives us a 
theoretical value of  

    (3.60) 

and a similar deviation from the CODATA value.  The theoretically derived value of the 
neutron to electron energy ratio, then  compared with (3.35) is 

 .   (3.61) 
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Cosmic Expansion Rate and Expansion Force 
 
With respect to the expansion force, we would expect equating of the variance operator 
with respect to a change in the local scales, tl and xl, and the differential operator with 
respect to cosmic time, t, and space, x, so that 
 , and    (3.62) 
     (3.63) 
A change in the fundamental mechanical impedance, using (2.101) then becomes 

    (3.64)  

     (3.65) 

     (3.66) 

 
In this final arrangement, a change in the fundamental linear inertial density over time 
arising from expansion is viewed as a conserved or unitary mass/energy distributed over 
an increasingly larger unit length, and is equal to the change in continuum impedance 
over a changing unit distance and scale.  This can be seen graphically by referring to the 
Matrix of Invariants.  As the inertial density differential is a linear function of that 
changing unit length, and as the time and distance scales are held to be invariant with 
respect to each other by virtue of c, then the time scale is increasing as well.  In terms of a 
fixed scale of time, however, present, past or future, it is apparently an exponential 
function and in fact a measure of the cosmic expansion rate, Xe, and we should find  

 .  (3.67)       

where the figures in absolute value brackets are converted from the second term by 
complex integration with respect to time. 
 
Substituting the product of  (3.60) and the CODATA based value of w0, gives an 
evaluation of 
    (3.68) 
where the accelerating change in wave number is masked by the change in unit length. 
 
This number, the rate of change in a meter unit of spacetime, per second, times the 
number of meters per megaparsec, gives the expansion rate in terms of the Hubble 
constant or 
  (3.69) 
 
A study by Ron Eastman, Brian Schmidt and Robert Kirshner in 1994 and quoted in 
Kirshner’s recent book, The Extravagant Universe, found an H0 = 73 km/s/mps +/- 8km 
and an article in the Astrophysical Journal, 533, 47 - 72, (2001) by Freedman, W. L. et al. 
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gives the final results from the Hubble space telescope key project to measure the Hubble 
constant as H0 = 72 km/s/mps.  There are  meters per megaparsec. 
 
Thus, if the Hubble rate of expansion is roughly 73 kilometers per second per 
megaparsec, and since there is no logical compulsion to think that we are at the current 
center of the universe, (except in the sense of a 3-space layer moving out from the center 
of a 4-core), this would tend to indicate that every local section of space, absent 
gravitational and electromagnetic constraints, is moving away from every other at 
approximately 2.35 x10-18 meters per second per meter of separation.  It follows logically 
that inversion of this number will give us the approximate time since all the matter was at 
the same locale, that the universe has been expanding, or 4.25 x1017 seconds, which is 
roughly 13.5 billion years.   
  
However, as this number might be deemed to represent an expansion via a compounded 
augmentation of the scale of spacetime itself, and not simply an extension of matter 
within that spacetime, we might surmise that this represents an exponential expansion, in 
which case the following equation for the doubling of spacetime applies, as 
 ,  (3.70) 
This indicates that spacetime is doubling at a current rate of every 9.311 billion years, 
measured in terms of today’s seconds.  If we assume that the wavelength of the cosmic 
background radiation at approximately 5mm embodies that augmentation, while 
harkening back to a period of primal beta decay as indicated by the Compton wavelength 
over 2p of an electron, this represents a doubling of some 30 times, or 

  (3.71) 

 a lifetime in terms of today’s measure of time of roughly 288 billion years.  
 
As 
  (3.72) 
it is worth noting that this figure is effectively 70%, the factor of expansion attributed in 
current cosmological schemes to dark energy.   
 
As this expansion rate as found in the Hubble constant is also found in the differential 
change in the linear inertial density and tension force operating on a fundamental 
quantum oscillation, it is confirmation of the fact that cosmic expansion provides the emf 
driving such oscillations.   
 
Returning to (2.144), rearrangement gives 

 .  (3.73) 

Returning to (2.146), which we can rearrange and solve, using the CODATA value for 
elementary charge, gives 
 .  (3.74) 
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Thus the SI current per quantum differential change in frequency associated with beta 
decay is equal to the fundamental charge of the system.  If we return to (2.147) and 
divide through by k to arrive at a normalized and naturalized value of elementary charge, 

, we have,  

   (3.75) 

which shows charge to be the inverse of the quantum differential change in angular 
frequency. 
 
A final speculation regarding beta decay concerns the decay rate of the neutron, tn, which 
is reported  in a paper by R.R.Kinsey, et al.,The NUDAT/PCNUDAT Program for 
Nuclear Data  as being 624 seconds.   Other recent sources report it in the 887 +/- 2 
second range.  If instead of the standard use of the ln 2 as the dividend used in computing 
a half life, in light of the above analysis of a 4-wave, we use the ln to indicate the 
doubling of a 4-core, we have 

 .   (3.76) 
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4 – Strong Interactions 
 
The above development shows the generation of quantum gravity and the electroweak 
interaction as a function of the spin dynamics of a fundamental oscillation.  As functions 
of a single quantum, they are not so much “interactions” as intra-actions within the 
domain of a discrete, rotational oscillation of the spacetime continuum.  With respect to 
interactions between separate oscillations, these functions are quantized by the 
fundamental characteristic dynamics of that continuum.  The strong “force” that binds 
nucleons, by contrast, is truly a function between and among separate quanta, and can be 
understood to vary continually within a certain range.  With respect to the domain of the 
strong interaction, we can imagine that it corresponds with the intersecting static limits of 
two adjacent quanta represented as extreme Kerr inertial sinks as in the Quantum Inertial 
Sink Diagrams 1 & 2 at the beginning of this development.   
 
According to Boyle’s Law, given adiabatic constraints, the energy per volume of a gas is 
equal to the pressure on the boundary of that volume.  If we apply a similar logic to our 
discussion of spacetime in which expansion appears to be adiabatic, then density of the 
spin energy, E0, within the boundary of a rotational oscillation will be equal to the tension 
at that boundary, held to be generally spherical, as 

 where (4.1) 

  (4.2) 

The tension, however, is also a function of the boundary configuration, as a given volume 
can be bound by a variable surface area, so that a decrease in boundary area, given no 
change in volume, must result in a decrease in the wave force if the energy is to be 
conserved.  Disregarding the small difference between the spin energy of the neutron and 
proton, if two equal volumed quanta with the same energy density are brought in 
synchronic contact so that there is no tension gradient at their common boundary, the 
decrease in their total boundary area with gradient before and after conjunction results in 
a proportional decrease in the wave force of each.  We can approximate this in general 
terms by looking at the difference between the combined surface area of two separate, 
equal spherical volumes and the surface area formed by two hemispheres connected by a 
cylinder of like radius about their combined volume.  The following table shows this as, 
 
Wave State Volume Total Surface 

Area 
Difference % Difference 

2 Single Waves     

2 Conjoined Waves    1/3 of a Single 
1/6 of Combined 

 
We might expect, then, a reduction in wave force of 1/6 to 1/3 of the quantum 
fundamental with the addition of each nucleon to an atomic nuclear congregation, which 
would result in an apparent reduction by a related amount in the mass/energy of the 
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system.  Hence this energy appears to be bound up in the nucleus, with the actual amount 
depending on the geometric configuration of the nucleus.  In effect what occurs is a 
conversion of spin energy density, E1, to the potential energy density of continuum mass, 
V1, as a reduction in the wave number, and a net decrease in the wave tension, f0, where 
 , where (4.3) 

  (4.4) 

  
In light of the above development of the nucleons as strain oscillations of spacetime, this 
shows the energy-stress force, E0-3t0, to be divided over the 4p steradians of the 
spherical volume.  Therefore, the energy density of (4.4) is the energy per steradian of the 
oscillation.  Taking the square root gives us the energy, and according to the matrix of 
invariants the other dynamic functions of spin, per radian of strain travel.  Thus the 
ranges from the table above give the change of (4.3) per radian and relate that change to 
the primary parameters, w0 and k0, and thereby to energy and mass, and we have 

 , (4.5) 

 . (4.6) 

 
This change in energy or binging energy is generally measured in million electron volts, 
Mev.  In the Mev system, mass is converted to elementary charge and the time and 
distance dimensions are set to 1 or .  The binding energy per 
nucleon observed is in the 6 to 8.794… Mev range for all but the lightest elements, for 
which it is less.  The upper end is the value for the binding energy of nickel, 62Ni, as the 
most stable of elements.  The only stable elements beneath the lower threshold are 
hydrogen, helium-3, and lithium, with helium-4 in-range at a stable 7.074 Mev.   
 
The mass of the neutron is then 939.565…Mev, and the proton is 938.272…Mev.  The 
energy density per steradian for their average is then 

  (4.7) 

The range for the change in energy due to nuclear congregation as derived above is then 

  (4.8) 

 
Note that the square root operation is effectively the reverse of a cross product, in which 
the crossing of two orthogonal tangent vectors produces a radial or normal vectors.  In 
that case the crossing of two forces can result in a third orthogonal force.  Here, the 
square root decomposes a normal vector into two orthogonal tangent vectors.  The 
resultant energy or force vectors, depending on the particular dynamics being analyzed, 
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are in units of energy or force.  The square root operates on Mev and not ev, since the 
basic units of energy density and stress are volume units and the unit Mev is in the same 
scale as the energy of the electron at .510… Mev or the difference between the proton 
and neutron at 1.293…Mev.  Thus the SI stress force equivalent to energy in Mev 
remains in Newton or mass distance per time squared, and not the square root thereof. 
 
As a refinement, with respect to nuclear congregation, twelve equal volume spheres will 
pack tightly around a thirteenth, so that we might imagine instead of distribution of the 
energy over 4p steradians, a maximum distribution over 12 equal sectors of p /3 
steradians.  The resulting range then becomes 

 , (4.9) 

the upper boundary of which is slightly over the observed upper limit to binding energy 
per nucleon.  This is the energy per radians.  Note the tie in of this configuration with 
the comments on the weak mixing angle at (2.58).The top four elements in this regards, 
two nickel and two iron isotopes, taken from a study by Wapstra and Bos quoted at 
http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html, are  
  

Nuclide Mev per nucleon 
62Ni 8.79460 +/- 0.00003 
58Fe 8.79223 +/- 0.00003 
56Fe 8.79036 +/- 0.00003 
60Ni 8.78079 +/- 0.00003 

 
Finally, with respect to the strong interaction and the quantum gravity differential, using 
the upper limit for comparison, we have a theoretical dimensionless ratio between the two 

  (4.10) 

 
Comparing this with (4.2), we see that it is equal to the spin energy-stress density of the 
oscillation integrated over 4p steradians; that is, the volume with respect to E0 and the 
surface area with respect to f0. 
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5 - Cosmological Considerations and Speculations 
 
Whether we see the decrease in inertial density with expansion as an elastic strain and 
concomitant stress pulling on the rotating wave front of a quantum oscillation or the 
densification of that front as an inertial body force pushing back on that front, the 
existence of forces that result in the restoration of any strain of the wave medium defines 
it as being elastic.    Even an instance of inertial wave motion, as with an ideal jump rope, 
in which the kinetic energy is constrained, relies on the modulus of rigidity of the rope 
for the inertial constraint.  As the modulus of rigidity is the shear modulus which can be 
expressed as a function of some tension modulus, it is clear that even an example of an 
ideal inertial wave depends on elastic properties for its expression.  Attempting to make a 
jump rope out of bread dough will prove the point after only a few rotations.  Apparently 
then, inertia and elasticity, or inertial density and tension/shear stress-strain are two 
phenomenalogical aspects of an underlying inertial continuum ontology.   
 
Perhaps the real question is whether or not, in addition to being elastic, the spacetime 
continuum is capable of plasticity.  Obviously, the elastic limits cannot be exceeded in 
the short term on the level of a quantum wave, or the wave would quickly dissipate, i.e. 
the medium would not sustain oscillation.  Attempt to make a drumhead out of uncooked 
bread dough.  On the larger scope of things, the vast areas of cosmic space devoid of 
galactic presence suggest regions of spacetime that have exceeded the limits of 
oscillatory strain and are in plastic flow.  The whole issue of the missing dark matter 
which is deemed to hold sway at the peripheries of galaxies might itself vanish if we find 
that the tug between the galactic nuclear dynamics of gravity with increasing  angular 
momentum and the isotropic expansion of the galactic environment are sufficient to 
exceed those elastic limits in the middle interstellar regions, leaving the outer regions to 
follow the dictates of angular momentum while the center region is under the domain of 
gravity and angular acceleration.   
 
A terrestrial analogy of sorts can be found in the demolition of an old industrial brick 
chimney.  When of sufficient height and toppled by explosion so that it pivots at its base, 
the potential for angular acceleration of the top can exceed that of gravitational 
interaction or free fall alone.  If the shearing force arising from angular acceleration 
exceeds the bonding strength of the mortar, that acceleration can not be transmitted to the 
top portion of the chimney, which will break into two parts.  The topmost part of the 
bottom portion is accelerated by angular forces greater than the gravitational ones and 
falls first with greatest velocity.  The speed at impact for any differential length of the 
bottom section is proportional to its distance from the center of rotation, while the top 
portion is under the sway of gravity alone and hits the ground last, all portions at the 
same velocity.  !
 
The spacetime continuum itself is the cosmic mortar that keeps the quantum waves that 
comprise the stellar systems together.  In a somewhat different scenario from our falling 
chimney, if a region of spacetime itself is under rotational stress to convey a common 
angular acceleration to the halo around a galactic core, we might imagine the rigidity of 
spacetime to be maintained to a yield boundary after which the shearing stresses would 
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exceed the limit imposed by the shear modulus and a plastic state would ensue.  Barred 
spiral galaxies would indicate an inner region of relative rigidity and elastic integrity of 
spacetime, with conventional spirals indicating a wider area of plasticity.  As the tangential 
component of the angular acceleration increases, so does the centripetal component, and as 
the stress at the outer extents of the galactic arms increases to the yield limit, a state of 
plasticity ensues between those extents and the adjacent inner section.  The new outer 
extent of the area within the galactic elastic circumference next accelerates to the tangential 
velocity productive of plastic flow, resulting in a differential shrinkage of the elastic 
circumference.  The angular momentum already imparted to the outer regions at the 
inception of the yield would be maintained as a constant tangential velocity.   
 
Apparently regions of maintained elasticity can exist within larger regions of plasticity 
and vice versa.   If the elasticity, as the stress-strain relationship, is a function of inertial 
density, it would appear to be independent of time, and therefore reversible.  Any 
geometrically defined process resulting in a densification  or confinement of a plastic 
region would be capable of restoring elasticity.   
 
With that caveat, we can now join the pieces of the spin function with the expansion stress.  
For an elastic medium of tension stress T0 , (where we call the stress a tension stress, 

although it is orthogonal to all of 3-space), with a strain of , the 

orthogonal modulus of elasticity, Y, is 

   (5.1) 

The 4-D, either hyper-volume or spacetime, potential force density then is equal to the 
inverse of the Planck area, APlanck, expressed as a derivative of area with respect to stress 
and not the differential area, dA,  

 and (5.2) 

  (5.3) 

The inertial notation, in which all orthogonal sense are tacit, points to the fact that 
although the modulus of elasticity is conventionally given the same dimensions as the 
stress, and the strain is a dimensionless number, the modulus in this case is actually an 
orthogonal stress derivative with respect to a change in extension or strain, which is a 
linear-stress/volume-force potential, as  

  (5.4) 

10
01 

rl
l meter

e k -D
= = =

( )0 0
0 0 3 2

0
38 2

53 2
16

6 3 6 3

1 68877 10  8 041025 10
2 10019 10
. ... / . ... /
. ... /

T TY i i i f
r

x N mi i x N m
x m m

k
e

-

= = = =

= =
D

t

( )

( )

20 0
1 0 0 4 22

0

38
69 2 2 1

32

6 3 6 3

1 68877 10   3 82871 10
4 41082 10
. ... . ... /
. ...

q

Planck

T fYF i f
r G

x x N m m
x

k
e

-
-

-
= - = = = =

= - = - = -A

t

70 2
0 0

2
0 0

2 61184 10
1

. ...
/Planck

d x m
dT T N m

-A A
A º = =

0 0
0

0

1
6 3

dT df Yi r i r i r
idr d idr

t
= D = D = D

A ×



 109 

which upon being integrated by iDr, (dividing by ik in the Euler formalism), produces a 
stress, f, and (5.2) is then a 4-D force potential, which is integrated by the quantum 
gravitational constant, so that 

  (5.5) 

 
With respect to the rest of the parameters of the Planck scale, the square root of (5.2) 
gives us the inverse Planck length or what we can call the Planck wave number as 
  (5.6) 
which with (2.84) gives the Planck mass, mPlanck, 
  (5.7) 
and with c gives us the inverse Planck time, or what we can call the Planck frequency as 
 . (5.8) 
Inverting (5.6) and (5.8), to express them as derivatives as in (5.3), 

  (5.9) 

  (5.10) 

and doing the same with (5.7), we have 

 . (5.11) 

In terms of a present local section of spacetime, (5.3), (5.9), and (5.10) simply express 
relationships of the familiar invariants at those local conditions in natural units, as can be 
seen in the next to the last term of each, followed by the SI equivalents.  It is the large 
magnitude of T0 in SI units that makes the scale so small, which it is in terms of local 
natural units, x0.  If the value of xPlanck is extrapolated back to an initial condition of unity 
at the primal emanation, and T0 retains its current SI value, then x0 is expressed in units of 
xPlanck and is a measure of the extent of expansion of the cosmos, assuming maximum 
possible density at the primal emanation. 
 
We can make one adjustment to these identities that will facilitate the final development 
by normalizing the value of c.  We can do this by using the light second, lls, the distance 
light travels in one second, as our unit of length, so that the Planck length becomes 

  (5.12) 

Conversely, we can use the light meter, tlm, the time it takes light to travel one meter, as 
our unit of time.  This is within an order of magnitude of one nanosecond, in which case, 

 . (5.13) 

0 1
q

q
Planck

G
f FG= =

A

1
2 1 34 16 18765 10. ...Planck Planck Planckr x mk- - -A º º =

( ) 82 17661 10. ...Planck Planckm i x kgk -º =t

( )1 43 11 85501 10. ...Planck Planck Planckt c i x sw k- -º º =

1
2 35

0 00
2

0 00

1 61612 10
1

. ...
/

Planck
Planck

x Td x x mx
dT T N mT

-A
º = = =

11 1 44
0 00 0 0

2
0 0 00

5 39080 10
1

. ...
/Planck

c x Tc dx dt c x x st
dT dT T N mT

-- - -

º = = = =

( ) 3
2 8

0 0
0 2

0 0

2 17661 10
1

. ...
/

Planck
Planck

i m T x kgm m T
dT T N m
k -

º = = =
t

1
2 44

0 0
2

0 0

5 39080 10
1

. ...
/

Planck ls
Planck

x Td x lx
dT T N m

-A
º = =

11 35
0 00 0

2
0 0 0

1 61612 10
1

. ...
/

lm
Planck

c x Tc dx dt x tt
dT dT T N m

-- -

º = = =



 110 

It must be understood, however, that if we do this for the Planck scale, we must do it for 
our current local scale.  Thus the angular wave number in terms of the light second is 
  (5.14)  
and the angular frequency in terms of the light meter is 
  (5.15) 
 
We also make the following geometric observation with respect to (5.4).  An increase in 
the radius of a sphere or torus or a normal radial of a cube results in an increase by the 
same proportion squared to the surface area, subject to geometric configuration. 
Therefore, normally we would look for a change in the inertial density, l0, to be a linear 
function of ¶x through a change in the wave number k0, with a change in T0 as a function 
of ¶A and a squaring of ¶x.  Thus, given the following, where the bracketed figure in the 
second term appears to be the oscillatory spring constant, !

  (5.16) 

differentiating for the end terms, we have 

  and (5.17) 

  to determine if (5.18) 

  (5.19) 

that is, that the inverse Planck area divided by the wave number squared is the oscillatory 
spring constant of spacetime.  The problem with this is that the equality is valid only if 
mass varies with the wave number 
  (5.20) 
so that  
  (5.21) 
 
showing that the linear inertial density varies with the square of the augmentation of the 
length scale, in keeping with the identity, , and points to its invariance vis a vis 
the other wave functions.  Thus we are back to (5.16), which can be restated as  

  (5.22) 

and see that a change in inertial density with a stretching of the length and, by virtue of 
, time scale is an accelerating change equal to the change in force per change in 

area or dynamic stress, which we might find is exponential.  We can think of this in 
physical terms as the continuous prevailing of the expansion force over inertia.   
 
Returning to (5.12) and (5.13), a change in the scale of x or t is a function of the square 
root of the change in stress, an expression of the field strength, and for a normalized c is 
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  (5.23) 

  (5.24) 

 
Inverting gives 
  (5.25) 

  (5.26) 
and mass is simply the product of kPlanck and the inertial constant. 
 
The inverse Planck parameters, (5.2), (5.6), and (5.8) and the mass term, (5.7), only have 
significance if we image that at some initial condition at primal emanation, but not 
necessarily a hot, big bang, they were all at a general condition of unity in the SI system.  
The wave number in (5.6) is in terms not of a meter now, but of the universal whole now 
or of a cosmic unity or extent, Cx. Thus we imagine the whole of the universe, at some 
primal epoch, collapsed to a sphere or horn torus of maximum density, in which the radii 
of all oscillations would ideally be in contact.  If we think of the scale of those radii as 
being in terms of the current interpretation of the Planck length, then the scale of Cx 
would be one meter.  If we think of that scale as being the current scale of x0, at 10-16 
meters, then Cx would be in the general neighborhood of 1011 meters, assuming a 
population of 1080 nucleon.  Comparing this value with the current value for  we have 
the exponential factor for the change in  due to a change in inertial density from 
expansion 

  (5.27) 

indicating that the measure of unity has decreased, vis a vis the whole, according to the 
square root of the tension, T0, from a universal unit, by the inverse factor of 

 to a current meter.   
 
In similar fashion to (3.70) we can get a figure for the extent of cosmic expansion 
through a doubling of that extent, in terms of light seconds as 
  (5.28) 
where we note the tie-in of this logarithmic change in the field with the discussion on 
beta decay at (3.42) and in the appendix on exponentiation at (7.139).  This extent 
divided by the doubling rate in (3.70) gives us the number of times that extent has 
doubled or 

  (5.29) 

Approached another way, dividing the value of the expansion rate in (3.68) by the inverse 
of (5.27), where the expansion rate is the rate of decrease in the inertial density and 
thereby a measure of the linear scale, gives 
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  (5.30) 

for a factor of a little over thirty times the increase from x0 to 1 meter and an age of the 
cosmos of approximately 285 billion years.  This compares very closely with (3.71) at 
30.94 and 288 billion years which is based on the background microwave wavelength, 
and supports the assertion that the expansion of the cosmos is exponential and structured 
according to this development.   
 
With respect to the Planck frequency, , the unit of time is once more universal and 
is in fact the time lapsed since the universal expansion began, 

  (5.31) 

What this says, of course, is that a second today is not what it was 285 billion years ago, 
but then again, neither is a meter, so c remains invariant. 
 
The Planck mass, then is the product of (5.27) and m0, the neutron mass, and gives its 
value at that early epoch, mI.  The remainder of the early epoch values for oscillation 
functions, as in the orthogonal matrix of invariants, can be found by substituting the 
values of  and  for the current values. At this scale the spin energy of a 
neutron would be, 1.95624…x109 joules, the Planck energy.  Based on this line of 
thinking, the potential energy density as in (4.4) at that epoch would be 1.10638…x10113 

joules/cubic meter or 1.23101…x1096 kg/cubic meter.  This assumes that the wave 
number is still the measure of mass and that the wave number of (5.6) is per today’s 
meter, so that each oscillator is confined to a volume of roughly 10-105 cubic meters.   
As there are estimated to be roughly 1080 hadrons in the known universe, this indicates 
that at this scale the entire known compliment of matter would fit in a volume of 
approximately 10-25 cubic meters or roughly one cubic nanometer.  The inertial density 
would be the same, regardless of whether there where any actual oscillations at that time, 
and though of great magnitude, is hardly infinite and does not suggest a singularity.  The 
stress T0 would be 4.81635…x10114 Newton/meter squared.  The transverse wave force 
would be 1.21043…x1044 Newton. 
 
If we idealize the cosmic structure as a horn torus, in which the center hole consists of a 
dense inertial locus, instead of as a sphere, then the horn becomes the center of the primal 
emanation or “big bang”.  Functional continuity is thereby maintained at and through the 
center, and expansion of a 3-D space from maximum density at that center and out around 
the annulus, with rotation about the axis, will lead to decreasing density with that strain, 
until such time as it reaches a half revolution of the annulus.  From that locus the return 
toward the center will increase the density of the continuum as it is constrained back 
toward the horn in a cosmic inertial sink or “black hole”.  A similar effect would be 
produced by an oscillation through the horn, without the circumnavigation of the annulus, 
with some modification.  This is more in keeping with the dictates of continuum logic, as 
circumnavigation of the annulus would appear to assume some type of ideal fluid, which 
has not been a part of our assumptions, i.e. no point neighborhoods that can flow past each 
other.  Only stresses are assumed to be able to freely rotate.  Finally, the structure might 
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echo that of the fundamental quantum spin diagrams, expanding and contracting over 
cosmic time. 

  
     2-D Representatioon of a 3-Torus  

With conceptual respect to the principles of expansion, the center of the torus comprises a 
locus, V, of maximum potential energy, and the extent of the annulus in the plane of the 
torus comprises a circumference, K, of maximum kinetic energy.  This gives a linear 
potential energy density of       
      (5.32)
and a kinetic energy density of        
 ,     (5.33)   
both of which are equal to a tension force, t, so that       
      (5.34) 
The negative sense reflects the relationship of Wave Diagram 2, in that the 
velocity/momentum and displacement are always of opposite sense.  We might anticipate 
that tK vanishes at the extremum, since it represents a point of directional change, 
maximum momentum and zero acceleration, but this is so with respect to the central toric 
plane only, as it still has a centripetal component of angular acceleration about the polar 
axis.  The horn torus represents an inversion of sorts of Wave Diagram 1, in which the 
antinodes of the central rotating x axis of that spin map to the toric central plane and the 
path of the nodes in the Y-Z plane map to the toric center.  It is symmetrical to Spin 
Diagram 1 with the V poles brought together at the center of the sphere.  The is a 
geometric factor that maps V1 onto K1.  The points of maximum instantaneous power of the 
wave are found at iV = -i K and the flat space of the torus. 
      
The sum of the power at the locus of points K should be equal in magnitude to the power at 
point V, which we can express as       
     (5.35)  
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Assuming the invariance of c, combined with (5.32) & (5.33), this can be reduced to a 
contrast of the inertial densities, or  
 , and    (5.36)

     (5.37)    

We might anticipate that g is a 4-vector representing the radius of the toric annulus, in 
which  is a 3-vector, Cx is the cosmic expansion extent, a 4-vector, equal to g and toT, 
the cosmic time elapsed since a locus of stress at V has transformed to a point on the plane 
of the upper annulus extremus at, iV = -iK.  Thus 

  (5.38) 

where the Planck length is an invariant equal to the initial  

     (5.39) 

 
A cosmic time vector, T, can be envisioned through the horn and in the case of the 
revolution of the annulus, remains locally tangential to the annulus as T.  We might 
further imagine that T is an axial vector, imparting rotation to the torus as a whole.  In the 
case of an oscillating structure, the vector simply reverses with the oscillation.  We can 
assign a spatial axis and vector, X, which is parallel to T0 at time zero at the center of the 
horn.  It is immaterial which vector is stationary and which follows the annular tangent.  
Thus T constitutes a fourth spatial vector of motion, which we might call W, and which is 
locally indistinguishable from X, Y and Z, but which is normal to all three, as indicated 
previously.  T is not to be confused with the t dimension of a standard model four-vector, 
as we are here interested in a time whose unit scale does not change with a change in 
spatial scale with expansion, and whose product with a cosmic frequency, W, will range 
between 0 and ½ p.   
 
Any three-dimensional locus of points emerging from the horn undergoes an expansion 
which is perceived locally as isotropic. While the isotropic nature of the points equidistance 
from the horn center is apparent, the matter of those closer and further from that center 
require some scrutiny.  The points at T+ have a decreased inertial density from those at T0, 
which is itself decreased from T-, which indicates a gradient and an anisotropic condition.  
In addition, there would be no net motion of the locus from the center unless the expansion 
force, t, bore the following relationship to T, or 
  (5.40) 
as with the inertial densities   

  and (5.41) 
  (5.42)   
and with the expansion stress, f,   
   (5.43)  
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Combining these inequalities with (2.121) we have the following expression for the 
expansion differentials, ke and we, for , and   

 .     (5.44)  
 .     (5.45)   
Since  

 , (5.46)   

we might surmise that this states that c is invariant, but in a special sense.  In particular, it 
says that xe and te are covariant.  It does not, however, say that, for the following  
 or (5.47)    
 ,  (5.48)  
where .  Therefore, the expansion rate appears to be the 
operation of a complex exponential function, as might be expected from the above 
derivations, indicating its cyclical nature.   We find here the oscillation of individual 
quanta as the function of an overall cosmic oscillation, where W is the cosmic frequency, 
iAc is the imaginary part of the cosmic complex amplitude and , given by  

  (5.49) 

where we have used the imaginary part of Euler and in which, owing to the close 
approximation of WT to p/2 we can use x0 in lieu of Cx in the cosine, 

  (5.50) 

The left figure below shows the relationship in orders of magnitude of the Planck length, 
neutron scale, meter, and presumed cosmic extent in SI units at current cosmic time T0.  
Also shown are the presumed cosmic extent and meter at the point of cosmic 
inception,TI.  At the right end of each parameter is the value in units of the Planck length. 
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The above speculations concerning the form expansion might take need not be the only 
interpretation of the above analysis.  It appears that these parameters might be interpreted 
in the context of a fixed 3-space without boundary in which the apparent expansion 
corresponds with an isotropic contraction of the oscillators toward the Planck length, in 
keeping with the development of the gravitational quantum and the hyperbolic nature of 
the inversphere, the ultimate fate of local groups being coalescence in inertial sinks.  Red 
shift would come from this shrinkage.   
 
In the right figure the invariance of the relationship among Cx, the meter, and x is shown at 
time TI and T0.  Note that the relationship is unchanged if I and 0 are transposed, as would 
be the case for cosmic expansion.  In this figure, we are assuming that Cx is the 
fundamental unit and therefore remains unchanged, with all other values expressed in terms 
of it.  Rotational oscillation of that extent, in conjunction with the inertia of its core, would 
induce the stress responsible for its quantum oscillations.  x0 has the value of the Planck 
length in terms of the invariant cosmic extent, and Cx and a meter, both at T0, represent 
their apparent values at TI, based on the assumption of expansion.  By extention of this 
logic, the cosmic extent could oscillate between contraction in this manner and expansion 
as outlined before, with the invariance of the fundamental relationship intact throughout the 
oscillation.       
 
Finally, in this regards, the condition in the right figure might be interpreted as 
representative of a hyperbolic 3-space without boundary of fixed extent, in which the 
apparent contraction or expansion is simply an artifact of negative curvature similar to an 
Escher print.  It is not a necessary conclusion from the data that all hadronic and leptonic 
matter proceeds from one initial inertial font, such as a big bang.  It is entirely feasible that 
such matter is generated by active galactic nuclei, galaxies being the largest discrete 
structures observed in the universe.  The double rotation of the quanta is reflective of the 
conditions of helical stress-strain that would exist at the center of such galaxies, involving 
simultaneous toric annular and polar rotation, with black hole density and stress.  The 
collimated, relativistic jets, with gamma frequency observed to issue from these loci 
suggest two such tori back to back at a sandwiched accretion disk, their central black holes 
in fact inertial fonts, generating hydrogen plasma.  The lighter elements, including 
molecular hydrogen and helium of all isotopic configurations, with perhaps some lithium, 
would be expected to emerge from such high energy fonts, the heavier congregations of 
nuclear quanta being generally unable to withstand the relativistic pressure of generation 
which would necessarily exceed that of T0. 
 
One final word is in order with respect to special relativity.  It is apparent that any instance 
of translational momentum increases the stress on and hence energy of an oscillation, 
fundamental or secondary, with a contraction of r, resulting in an increase in w and 
therefore in k, which by virtue of t results in an increase in or relativistic augmentation of 
m.  This development, therefore, is in keeping with the Pythagorean theorem and the 
Lorentz framework, though not necessarily all the conclusions drawn from the customary 
SR interpretations of time dilation and length contraction.   
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6 – Evaluations 
 
Observed Values 
For evaluation purposes, the following, which are 2002 CODATA values, or computed 
directly from those values, are used with the exception of those denoted by †. Asterisks 
indicate observed values use in computing the theoretical values of this model.!
 
Speed of electromagnetic wave propagation* 

                * (6.1) 
Planck’s Constant of Action* 

               * (6.2) 
Newton’s Gravitational Constant 

       (6.3) 
Elementary Charge 

      (6.4) 
Fine Structure Constant 

        (6.5) 
Neutron Mass* 

               * (6.6) 
Neutron Compton Wavelength over 2p 

       (6.7) 
Neutron-Electron Mass Ratio, Inverse 

,      (6.8) 

Neutron-Proton Mass Ratio, Inverse 

,     (6.9) 

Proton-Electron Mass Ratio, Inverse* 

,             * (6.10) 

Planck Scale (Area) 

      (6.11) 

Electron Angular Frequency, Inverse 

,   (6.12) 

Hubble Constant†!
      (6.13) 

Reduced Hubble Constant†!
      (6.14) 
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Theoretical Values 
The computed values derived from this inertial theory as follows are based on the 2002 
CODATA values for c, , mn and the ratio of mn to me or mp to me. 
 
Inertial Constant* 

     (6.15) 

Fundamental Wave Number 

     (6.16) 

Fundamental Angular Frequency 

     (6.17) 

Fundamental Wave Transverse Momentum 

      (6.18) 
Fundamental Wave Transverse Force 

       (6.19) 
Fundamental Linear Inertial Density of the Spacetime Continuum 

      (6.20) 
Fundamental Mechanical Impedance of the Spacetime Continuum 

      (6.21) 
Fundamental Tension Stress/Volume Energy Density of the Spacetime Continuum 

      (6.22) 
Fundamental Quantum Spin Energy 

      (6.23) 
Fundamental Quantum Power 

      (6.24) 
Fundamental Gravitational Quantum (Derivative form) 

    (6.25) 

Newton’s Gravitational Constant (Derived) 

     (6.26) 

Planck Scale (Area, Derivative form) 

   (6.27) 

Fundamental Charge (Raw Derivation of SI Value) 

      (6.28) 

Natural Fundamental Charge 

      (6.29) 
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Fundamental Driving-Driven Frequency (Neutron-Proton Mass) Ratio, Inverse 

,       (6.30) 

Fundamental Driven-Reflected Wave Frequency (Proton-Electron Mass) Ratio, Inverse 

 (Based on the CODATA Neutron-Electron Mass Ratio) 

,      (6.31) 

Fundamental Driving-Reflected Wave Frequency (Neutron-Electron Mass) Ratio, Inverse 

 (Based on the CODATA Proton-Electron Mass Ratio) 

,      (6.32) 

Differential Linear Inertial Density and Cosmic Expansion Rate 

  (6.33) 
Differential Expansion Force 

       (6.34) 
Hubble Rate 

       (6.35) 
Young’s Modulus of the Spacetime Continuum 

      (6.36) 
Volume Potential Force Density 

     (6.37) 
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Appendix A - Direct Product and Inverse Square Law   
 
At least two of the principle interactions between apparently discrete bodies are governed 
by this law which states that the strength or magnitude of the interaction, FQ, between 
two bodies is directly proportional to the product of the quantitative measure of some 
quality of those bodies, Q, and inversely proportional to the square of the distance of their 
spatial separation, d.  This finds mathematical expression as       

 ,     (7.1) 

 where kQ is a constant of proportionality which may be a derivative with respect to some 
argument common to both side of the equation or simply a differential quantity which is 
integrated by the bracketed term. 
 
If we assume that all bodies are composed of discrete portions or quanta, then the stated 
quality, Qa, for each body, a, would be the number of such quanta, na, times the unit 
quality per quanta, q, or .  Similarly, the distance could be expressed in terms of 
some quantum unit rq, so that . This gives    
   

 , (7.2)  

and the term in brackets can be viewed as a quantum of the interaction magnitude or 
force, FQ.  According to Newton’s second law, force is generally defined as the mass of a 
body times its acceleration, positive or negative as with  
  (7.3) 
in which it is shown that acceleration is the change in velocity as a function of time, 
velocity being a change in position or state as a function of time.  Mass is envisioned as a 
measure of the inertia or resistance to change in position of a body.  In general, therefore, 
velocity can be viewed as the rate of change over time of any variable quality, 
acceleration as the rate of change in a variable rate of such changeable quality, and mass 
as an inverse measure of the susceptibility or a direct measure of the resistance to change 
of a second quality that is being changed.  The third term in (7.3) indicates that force is a 
change in momentum over a period of time, where momentum, PM, is such second 
quality, m, undergoing some change at a steady rate, v, which might possibly be zero     
  (7.4)   
Gravitation.  The magnitude of gravitational attraction is directly proportional to the 
product of the quality of mass, Ma, of two interacting bodies and inversely proportional to 
the square of the distance, d, separating their centers of mass.  This finds mathematical 
expression in Newton’s law of universal gravitational attraction generally stated as       

 . (7.5) 

where GN is Newton’s empirically determined gravitational constant. 
 
In quantum terms this would be 
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 . (7.6)  

Therefore, the number in brackets represents a quantum of gravity or 

 . (7.7) 

It is worth noting that if we use the CODATA value of the mass of the neutron for mq, 
and the neutron Compton wavelength over 2p for rq, dGq resolves to that same value of rq 
divided by within a factor of 1.000014648, which is within the margin of error for 
GN.  This value for dGq is derived herein. 
 
Electrostatics.  The strength or magnitude of electrostatic interaction is directly 
proportional to the magnitude of the product of the quality of charge, qa, of each of two 
interacting bodies and inversely proportional to the square of the distance separating their 
centers of charge.  This finds mathematical expression in Coulomb’s law of universal 
electrostatic interaction generally stated as  

 . (7.8) 

The right most term uses quanta of charge, e, for the direct product, where e1 and e2  may 
be of like or opposite complex sense . Thus, if the sense of both is –i or +i, the product 
will be negative, whereas if the senses are opposite, the product will be positive, the 
positive product representing an attractive and the negative, a repulsive, force.  The 
constant of proportionality in this case, ke, is equal to the inverse of 4p times the 
dielectric constant or permittivity of the vacuum, e0.  Applying the same logic to the 
inverse square term as above, we have  

 , (7.9) 

where once again the bracketed term can be seen as a quantum of force. Since force has 

the dimensions of  or mass times length over time squared, the numerator of that term 

might be imagined to have the dimensions of ml and the bottom of t-2.  In fact, if e0 is 
given the dimensions of v-2, or inverse velocity squared, this could be the case. 
 
Electrodynamics.  The strength of an electromotive force between two currents of 
charge is directly proportional to the currents or the quantity of moving charges per 
second of each and inversely proportional to their distance of separation. It is not strictly 
speaking an inverse square law.  It finds mathematical expression in the following 
definition of the ampere or basic unit of current. 

  , where  (7.10) 

For two currents running parallel this becomes  
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  (7.11) 

Ba is the magnetic field produced by current ia at the location of current ib, d is their 
distance of separation, µ0 is the magnetic constant or the permeability of the vacuum and 
Fba is the force exerted on length L of current ib by the magnetic field Ba.  That force is 
directed toward current ia in the case of parallel currents, that is, those running in the 
same direction, and away from ia in the case of anti-parallel currents, those running in 
opposite directions.  It is noted that L and d are normal or perpendicular to each other.  
For an empirically determined value for Fba of +2 x 10-7 Newton per meter length of 
current, L, at separation, d, of one meter, µ0 is conventionally set at a magnitude of 4p x 
10-7 so that equal currents for both ia and ib, have a value of 1 Ampere.  This is an 
arbitrary value selection for µ0 to facilitate computation.  As such, the product µ0e0 is 
equal to the inverse of the speed of light squared or c-2, so that if µ0 is given another 
value, e0 and i will adjust accordingly. What is not arbitrary is the product of the number 
of charge quanta, ne1 ne2, per length and separation of currents per period of time, 
required to produce an Fba of +2 x 10-7 Newton. 
 
Since L and d are both of the same magnitude, we can speculate that for any value of L = 
d, and ia =  ib = 1, Fba is invariant, including at the quantum level indicated in (7.1) above 
of rq.  With respect to (7.11) it is apparent that µ0iaib has the dimensions of force. We 
have the option, however, of assigning the current the dimensions of the square root of 
force and making µ0 a dimensionless number in keeping with the comments concerning 
(7.9) above or of making µ0 an inverse quantum of force and letting the current represent 
a count of quanta of force, n1 and n2, as previously done above.  Therefore we have 

 , (7.12) 

where the current has been replaced by the number of elementary charges per volt and 
thereby, with unit resistance per ampere, t, (tav), is an inertial constant of dimensions 
mass-distance, and a is the fine structure constant. We can then assign the dimension of 
inverse time to each charge count.  In reality, t is a second order force differential with 
respect to time or frequency which is integrated by the product of the count of the 
charges. The final two terms of (7.12) can then be rearranged to give the more familiar 

  (7.13) 

where the final term is equivalent to the quantum of action times the speed of light.  It is 
apparent that the second term is equivalent to the bracketed term of (7.9) above with the 
substitution of a for the rq2.  This gives us the option of assigning the square of some 
quantum unit-length dimension to a, which we will see can be done with some 
justification, or of making the current a count of flow per unit length.  While current is 
generally conceived as the count of the number of charge carriers or charged “particles” 
operating at a given point over a unit of time, we can also think of it as the number per 
length of current. On a quantum level, with some rearrangement (7.13) then becomes, 
where a is dimensionless, 
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   (7.14)  

and we find the equivalence of (7.9). 
 
One final observation concerning dimensions involved in mathematical operations such 
as taking of the product or square root, is that while the product of two linear dimensions 
preserves the number of dimensions in the produced area, for example, the same is not 
necessarily true in the case of vector operations.  Thus the cross product of two forces 
resulting in a torque retains the number of dimensions (mlt-2) as each of the two 
components, though the resulting product is not quite the same quality as its components.  
The decomposition of such product through the square root or other factoring thus 
correctly results in an apparent doubling of dimensions and not necessarily, for example, 
the square root of force for each component.  Thus charge and current can be modeled as 
“forces” which operate tangentially to produce a radial “force” effect.  The quotation 
marks are used to denote dimensional, though not necessarily technical, equivalence. 
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Appendix B – Wave Transmission at a Discontinuity 
 
We might look to a function that concerns the reflection and transmission of waves at a 
discontinuity of the propagating medium, to better understand the boundary conditions 
governing charge generation.  Such discontinuity might be a change in inertial density of 
the medium itself or a change in tension or perhaps shearing stress along its span.  We 
can assume initially that the transverse displacement of the medium on both sides of the 
discontinuity is the same, so that the frequency of a wave crossing the boundary is 
unchanged.  The following is taken from Elmore and Heald, Physics of Waves. 
 
For a one dimensional model of wave transmission at a discontinuity, the boundary 
conditions require that in addition to the transmission of the initial wave with altered 
amplitude, a reflected wave must be generated.  As a result of these conditions we have 
the following, in which is the amplitude of the incident wave, is the complex 
amplitude of the transmitted wave, and k2, its wave number, is the complex amplitude 
of the reflected wave, and k1 is the wave number of the initial and reflected waves.    
  (7.15) 
   (7.16) 
From this we can solve for the amplitude reflection, , and transmission, , 
coefficients or ratios, and for the power reflection, , and transmission, , coefficients, 
which depend only on the properties of the medium.  We can see from (2.91) that if the 
frequency is constant, the impedance Z relationships will be identical to that of the wave 
numbers. 

   (7.17) 

  (7.18) 

  (7.19) 

    (7.20) 

It should further be stated that the requirements of conservation of energy and power 
dictate that  

  (7.21) 
 
 
Appendix C – Vector Orthogonality 
 
The 4-vector equation can be generalized to n dimensions for an ortho-normal space as, 
  (7.22) 

1A 2A
!

2B
!

211 ABA
!!

=+

221111 ABA
!!

kkk =+

aR
!

aT
!

pR pT

21

21

21

21

1

1

ZZ
ZZ

A
BRa +

-
=

+
-

=º
kk
kk

!
!

21

1

21

1

1

2 22
ZZ
Z

A
ATa +

=
+

=º
kk

k
!

!

21 22 2
1 1 1 1 1 22

1 22 2
1 1 1 1 1 22

p

c B B Z ZR c A A Z Z
l w
l w

æ ö-
º = = ç ÷+è ø

( )

1 2 2 22 2 2 1 22 2 2 2
1 2 22 2

1 1 11 1 12 1 2

4
p

c A Z Zc AT c Ac A Z Z

l w l
ll w

º = =
+

1P PR T+ =

2 2
0  01 i n nthn x x x- = -



 126 

Appendix D - Exponentiation 
 
Calculus is the study of the rate of change in one variable quantity, conventionally 
denoted by a y, which is held to be a function, f, wholly or partially, of another variable, 
generally denoted by an x or sometimes a t.  This underlying functional relationship 
between the variables is denoted by 
 . (7.23)  
In the case of a partial function, a function of more than one variable, we write  
 . (7.24) 
Thus, with (7.23) when , , and with (7.24) when , .  a, b 
and c are arbitrary symbols standing for unknown quantities of the stated variable x, t and 
y, and depending on the context and circumstance a, b and c may in fact be the same or of 
equal value.   
 
The underlying functional relationship or function does not necessarily indicate that x 
causes y or that y is the operational function of x.  While this may be so in the case of 
some physical and organizational conditions, in general terms the function simply 
indicates that when x has the value of a, y is always, within the context determined by f, 
uniquely observed to have the value of b.   
 
Thus, given a right triangle of variable angle, a, but fixed, unit length hypotenuse, the 
cosine can be stated as a function of the length of the adjacent side, a, and the length of a 
can be stated as an inverse function of the cosine.  In the language of mathematics, we 
would say that the cosine function maps the value of a onto the cosine and the inverse 
function maps the value of the cosine onto a.  This concept of mapping reflects the fact 
that any function that we might consider can be visualized and charted against the 
backdrop of an orthogonal co-ordinate system. 
 
Thus it may equally be true that  
 .    (7.25) 
Note that it is not generally stated that 
 ,     (7.26) 
although that may in fact be the case.  If x is the adjacent side of a and t is the opposite, 
they both vary with respect to some variation in the angle, .   
 
While it may be of interest to know the value of y for any value of x or t, it is often of 
equal or greater interest to know the rate at which y is changing for any value of x or t.  
This rate of change or ratio of variability of one quantity with respect to another is known 
as the derivative function, f ¢, of y with respect to x or t, or 

 .    (7.27) 

The quantity dy is the differential amount of change in y that occurs for every differential 
amount of change, dx, in x.  While dy and dx are customarily envisioned as being 
infinitesimally small, they are generally not small by the same proportions, and are 

( ) ( ) or y f x y f t= =
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indeed expressed as the change in y in units of that quality for every change of one unit of 
x.  Hence they are often used in partial derivative form as direction cosines, where by 
implication,  would be the hypotenuse of a right triangle of unit value and  is the 
adjacent side.  Here constitutes another function of x, with the prime notation 
indicating that it is a derivative function of f(x).  The single prime is the rate of change in 
f(x) commensurate with a change in x.  If it is a function with respect to time, f(t), i.e. a 
rate of change over some unit of time, it is a speed, or if a direction is specified, a 
velocity. 
 
If the rate of change in f(x) or f(t) is not steady or constant, then we have a second 
derivative of these functions, denoted by a double prime 

 .   (7.28) 

The change in velocity, acceleration, which is the second derivative with respect to time, 
, is commonly encountered and understood.  The equivalent with respect to x, also 

a type of acceleration, is a change in the intensity or magnitude of some derivative, 
, with each change in x.  Thus if represents the slope of a mountainside, the 

change in elevation per change in horizontal displacement, when the slope is a constant 
pitch, then , that is, it does not exist.  If the slope gets steeper as the mountain is 
climbed, then the second derivative is positive.  In physics this second derivative of x is 
called the Laplacian.  A force embodying the inverse square law is an instance of the 
second derivative. 
 
If the acceleration, the change in  or , is not constant, then we have a third 
derivative of these functions, denoted by the triple prime or  

 .   (7.29) 

 
With respect to , this acceleration of acceleration is known as jerk.  Any change 
from a position of rest involves an element of jerk, since the acceleration from zero to 
any finite velocity is not instantaneous or constant.  With respect to a mountainside, if the 
slope increases exponentially with the climb, instead of at a steady rate of say 50 meters 
per kilometer of horizontal distance covered, then the third derivative is functioning.    
 
In (7.28) and (7.29) it will be noticed that the differential with respect to y is preceded by 
the order of the derivative, while the differential with respect to x and t is followed by the 
order or exponent of the derivative.  This is due to the fact that the latter variables are 
actual squares and cubes, that is powers of the differentials, while the order of the 
dependent differential of y indicates the change in y attributed to the independent variable 
of the same order.  The dimensionality of y is always of what ever happens to be the 
inherent dimensionality of the quality y represents.  If y is a force, dny will itself have 
units of force.  Notice that fn(t), then would have units of force per time to the nth power. 
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A geometric example will perhaps make this clear.  While the following may not be the 
customary context for the second and higher order derivatives, it is a legitimate instance 
of such.  The equation for the volume of a cube, in which the volume, V, is a function of 
the length of one side, all sides being by definition equal, is  
 .    (7.30) 
The inverse function is  

 .    (7.31) 
 
A change in volume, dV, is still a three dimensional quality, and we might be tempted to 
say that it is equal to , which in a certain context it is.  If we want to express that 
change as a derivative function, however, we must use the definition of a derivative, 
which gives the original function plus the differential change as 
 .  (7.32) 
Subtracting (7.30), the terms in square brackets, gives the differential  
   (7.33) 

     (7.34) 
This last equation is a bit opaque, however, as it assumes that one of the corners of the 
cube is at the origin of a co-ordinate system and injects a corresponding bias into the 
derivation, which may or may not be warranted.  If we locate the origin at the center of 
cube, while still assuming each side aligned with the co-ordinates, we must assign the 
differential change in x to each end of a length and we have instead of (7.32) 

   (7.35) 

     (7.36) 
From this last derivation, it is immediately clear that the differential volume is made up 
of the six sides of the cube, the twelve edges, and the eight vertices or corners, all times 
an infinitesimal length of varying orders.  The first order derivative, corresponding to the 
six square sides of the cube of measure x2 and the one usually deemed to have the 
greatest significance, is explicitly stated as  

 .    (7.37) 

The second order derivative, corresponding with the twelve edges of the cube, consisting 
of twelve line segments of length x, is 

 .    (7.38)   

The third order derivative, corresponding to the eight vertices, each of zero, or 
technically, vanishing dimension, is  

  .    (7.39) 

Thus for the total derivative or (increasing) change in V with respect to a change in x, we 
have 

( ) 3V f x x= =

( )
1
3x f V V= =

3dx

( )3 3 2 2 33 3V dV x dx x x dx xdx dx+ = + = + + +

[ ] 3 2 2 3 33 3V dV V x x dx xdx dx xé ù+ - = + + + - ë û
2 2 33 3dV x dx xdx dx= + +

[ ] ( )3 3

3 2 2 3 3

2

                    6 12 8

V dV V x dx x

x x dx xdx dx x

é ù+ - = + - ë û
é ù= + + + - ë û

2 2 36 12 8dV x dx xdx dx= + +

( )
1

2
1 6d Vf x x

dx
¢ = =

( )
2

1
2 12d Vf x x

dx
¢¢ = =

( )
3

0
3 8d Vf x x

dx
¢¢¢ = =



 129 

 .   (7.40) 

If V were decreasing, and dx were a decrement, the change would be 

 .  (7.41) 

Note that the decrease from the initial condition is indicated by the negative sense of the 
summation, but that the magnitude of the sum in this case is of a positive 6 squares, 
minus 12 line segments, while adding back the 8 vertices.  In more elucidating fashion 
the magnitude of the derivative becomes 

 .  (7.42) 

While it is clear that the contribution of the 8 vertices is not effected by the value of x, it 
is obvious that as x increases, the contribution to the sum made by the edges increases 
linearly with x, while the contribution made by the surface squares increases 
exponentially, specifically by the power of 2. 
 
If dx is not quite zero, but exceedingly small compared to x, then it is apparent that the 
order of the derivatives is a fair appraisal of each component’s contribution to dV.  The 
additional volume is predominantly surface differential.  In fact, at the limit as dx 
approaches 0, each order is exponentially greater that the next order in succession.   
However, if the components are allowed to increase exponentially beyond the value of x, 
the situation inverts itself. 
 
If we think of the original cube, still positioned about the origin, as having some very 
small unit edges of length x, where x is the smallest imaginable length, and make the 
change, dx, exceedingly great, in fact approaching infinity, then the first order of six 
squares constitutes the six sense-axes of a 3-D space, the second order, the twelve edges, 
constitutes the twelve quadrants of the x-y, y-z, and z-x planes, while the third order of 
the eight vertices become the 3-D octants of the co-ordinate system. 
 
In the above cubic scenario, it is apparent that the numerical coefficients, which in a 
standard development of the calculus arise through the operation of the binomial 
expansion as with (7.32), are actually inherent aspects of the specific cubic geometry.  
The derivation consists of a division of each of the orders of differentiation by x, n times, 
where n indicates the order of each term.  As such it represents a reduction in the power 
of each term by 1 for each time or order.  Alternatively, we can view this as a 
multiplication for each instance of differentiation of x-1dx.  Thus, with the observation 
that a change in the volume of a cube must occur at its 3 boundary elements, i.e. faces, 
edges and vertices, (7.36) can be arrived at by  
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   (7.43) 

 
Notice that this describes an arrangement of 27 cubes, 3 x 3 x 3, with the original cube of 
volume V at the center, and that the total number of elements in the surface is 26, 
corresponding to the 26 adjacent cubes.  The process of differentiation reduces each of 
these cubes exponentially, according to its relationship to the center cube. The n in nV  
indicates both the magnitude and the geometry of the coefficients that arise through the 
polynomial expansion.  As there are two boundaries to any interval x, and an interval of 
equal magnitude to x at each boundary, xb, a binomial of power n is  
 .   (7.44) 
As an example, a 4-D hypercube expansion is  
 . (7.45) 
Making the substitution,  for the case of a 4-D equivalent to (7.43) gives 

  (7.46) 

 
As this is obviously a logarithmic operation, as indicated by the bracketed terms, where  
     (7.47) 
and as the derivative of the natural log is 

 ,    (7.48) 

we can recast (7.43) as  

  (7.49) 

This last observation suggests a fundamental tie-in between the derivative of a 
polynomial function and that of the natural logarithm. 
 
With this in mind, it is apparent that the matter of differentiation is closely related to the 
subject of exponentiation, and appears to consist of reduction by one power or order of 
exponentiation for each order of differentiation.  In the case of the cube, it is clear that 
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each order indicates an orthogonal reduction, from cube to square, to line segment to 
point.   
 
We might wonder if this is the case for all functions of the form of (7.23).  We might, for 
example, have a function that relates the perimeter of a square to its edge.  The resulting 
equation and its derivative are 

    (7.50) 

What is different in this case, is that there is no apparent second derivative.  In other 
words, for 

     (7.51) 

the function is not affected by the value of x.  It is a constant and does not involve 
a rate of change of  with respect to a change in x.   
 
Any function that does not change has a first order derivative of 0.  This does not mean, 
however, that it might not have a second order derivative.  Metaphorically speaking, the 
water swirling around a drain might be described by some function that maps its motion 
around the plane of the water’s surface.  At the point at which it becomes vertical and 
disappears down the drain, effectively leaving the dimensional space of the tub, the 
derivative with respect to change in that space vanishes.  Obviously there still must be 
some function describing its motion vertically and perhaps even horizontally once it has 
entered the plumbing system, albeit, in terms of that other dimension.  The key is to 
realize that (7.51) actually should be written 

    (7.52) 

     (7.53) 

 
There is another condition, however, in which, although there is a changing rate of 
change, there is no apparent change in the rate of change, i.e. no apparent second 
derivative, and that is the case of the exponential function, specifically of the natural base 
e, inversely related to the natural logarithmic function.  The exponential function is its 
own derivative, of whatever order we might envision, where 
     (7.54) 
so that 
    (7.55) 
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where Dx is a differential operator, that is, it operates on f to produce .  Thus since 
    (7.56) 
the difference between any two orders of differentiation, in fact, between any order and 
the exponential function itself is  
 .   (7.57) 
and 

      (7.58) 

 
We might wonder what significance this has, since subtracting one order derivative from 
another is rather like subtracting oranges from apples.  They are two different types of 
entity, just as a point is a different type of entity than a line segment or length, which is 
itself different from an area, itself different from a volume.  In fact, there are generally 
held to be an infinite number of points in a length, lengths in an area, and areas in a 
volume, i.e. of dimensions in the next higher order of dimension, so the subtraction of the 
lesser from the greater leaves the latter substantially unchanged.   
 
This then is the point in (7.58).  The dimensional identity of each order of differentiation 
is the same as that of the basic function, f(x) = y, since it is the exponent itself that is 
variable and not the base.  If we compare this condition with that of the cube and its 
derivative orders, in which the relative contribution of each order to the overall change in 
V is dependent on the ratio of dxn:dx, we see that for an exponential change, the relative 
contribution of each order at the limit is unaffected by the change in x, or as it is often the 
variable used in this context, t.  The ratio in the exponential case is always 1, hence the 
apparent lack of change.   
 
A doubling of the sum of the lengths of the edges and a quadrupling of each surface area 
results in an eightfold increase in the volume of the cube.  Note that there is no change in 
the number of boundary elements and their angular configuration, which is the defining 
condition of the cube.  Using a combinatorial or additive approach to creating a change in 
the cube, then, we see that it is more economical to augment the edges to move the 
vertices further apart, which defines the volume change, than to fill the cube with 
volume, since a unit of length is orders of magnitude less than a unit of volume.  Yet 
there is no conformal or topological difference between a cube of unit volume and one of 
volume 8, something we intuitively understand.  The matter of scale only attains 
significance within a combinatorial or economical approach.  
 
Hence in a continuum analysis, where the elements of various dimensions are integrally 
related, i.e. non-combinatorially, if we had a cube experiencing a continuous exponential 
change, each of the elements in its boundary, the faces, edges and vertices, would 
increase proportionally to its order with the change in volume, each derivative order 
increasing in proportion as the exponent of x or t.  In such event, using the value of 

 as our standard, all orders show the same exponential change and the whole is 
relatively, or perhaps better stated, intrinsically unchanged. It is only within the context 
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of some extrinsically determined property, such as some external standard of length or 
density, i.e. volume, surface or linear, that change is registered or observed. 
 
This is intuitively understood, especially in the preparation of scaled engineering 
drawings and models and other graphic representations.  It is also known rarely to occur 
in the physical world in which physical forms result from the combination of discrete 
units or building blocks of matter.  Adult humans do not generally look like babies three 
to four times their original length.  Equally true, most tree girth-to-height ratios increase 
with growth.  On the other hand, most celestial bodies of any size assume a generally 
spherical shape, irrespective of their volume.  Rephrasing (7.43) 
 

  (7.59) 

 
From another but still exponential perspective, in terms of our initially outlined derivative 
orders, this indicates that the magnitude of displacement, velocity, acceleration, and jerk 
might be equal or 
 .  (7.60) 
This is essentially the same equation as (7.57) and indicates that a relationship of this 
type is exponential in nature.   
 
We do not have to look far for another familiar instance of such.  While change is 
generally equated with motion and thereby with displacement or translational change of 
position, rotation presents an instance of motion without translational displacement, 
taking the position of the rotating body as a whole.  It is in a sense change without 
change, and is elegantly presented using the Euler identity, which involves the 
exponential expansion of an imaginary logarithm or 
  
     (7.61) 
 
As with the exponential function of (7.54), the domain of x is the real number line, but in 
this case, instead of the range of , y oscillates over the range of  if we 
consider only the real component, for each change in x of 2p, our angles and the “natural” 
unit of x in this case being in radians.  Otherwise y must be a complex number whose 
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range is a circle centered on the x-y origin in the complex plane, in this case of implied 
radius r = 1.  If we then map y to the real x-y plane, by multiplying y times its complex 
conjugate, where y then gives the radius r and x is the count of the rotations, the range of 
y will be a horizontal line crossing the y axis at y = r = 1.  Note that a circle of fixed 
radius from the origin maps as a horizontal line segment of 2p length.  Since the 
derivative of such a line is zero, the rate of change of the rotation is zero, at least in this 
mapping.  The only variable in such case might be the velocity of the rotation which 
might be reflected in the scale, the density, of the real number line.  Presumably a denser 
placement of the integers would represent a greater velocity.   
 
The use of a radian as the unit measure of x makes the equation self normalizing, that is, 
it sets the x and y axes of a co-ordinate system against which we might plot the function 
to the same scale.  Assuming a rotational amplitude or modulus, i.e. the radius, r, equal to 
the hypotenuse, selection of a unit value for the y axis for a cosine of 1 automatically 
dictates the unit length for the x axis, since a radius, r, and a rotational arc of one radian 
measured at a distance r from the center are of equal length.  We can then envision x as 
the distance traveled by a point P on the circumference of a rotating disk or equator of a 
sphere of radius r, but it might simply be a point in space that is revolving about some 
center of oscillation which is also the polar origin.   
 
Thus for any value of x,  

      (7.62) 

where n is an integer number of rotational cycles, , and where  is a 
remainder angle or phase in which .  As we shall soon see, we might also state 

      (7.63) 

where n is the count of the number of times that |y | equals one.   
 
If we want to express x in some conventional unit such as meters, we simply multiply it 
by the number of meters per radian and x will be in units of meters.  In such case, in order 
to convert x back to normalized units, (7.61) becomes  
     (7.64) 
where k is the angular wave number or number of arc radians per unit of length and  

 .     (7.65) 

A similar approach for t gives us 
     (7.66) 
where time is in natural units or radians, and for conversion from conventional units of 
time, 
     (7.67) 
where w is the angular frequency or number of arc radians per unit of time and 
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 .     (7.68) 

Such a condition would apply to a standing wave of fixed angular frequency.   
 
For a wave of fixed frequency traveling from a propagating source, we can combine the 
two to get 
    (7.69) 
where it is understood that x and t are of ambivalent sense.   
 
Finally by extending the exponent of e to complex numbers we have, 
   (7.70) 

 ,  (7.71) 

and we can see that (7.69) is simply a special case of these last two in which R = 1.  

Assuming that , using , (7.70) now maps to the x-y real plane as 
a horizontal line greater than y = 1, and (7.71) maps to a line between the x axis and the 
line y = 1.  The argument, as the middle term of (7.64) is called, conceals the fact that the 
sense of the angle q determines whether isinq is positive, changing in a counterclockwise 
sense, or negative, in a clockwise sense.  Thus we could apply a convention in which the 
negative sense of isinq maps (7.70) and (7.71) to horizontal lines crossing the negative y 
axis.  The rotation velocity and frequency would then switch sense. 
 
Let us examine the function  
 .    (7.72) 
Inverting the function so that  
      (7.73) 
gives 
 
 .    (7.74)  
We can find that  
     (7.75) 
 
where W(n) is related to the Lambert W function and in fact is identical to that function 
for the principal branch, integer values , or Lambert W(0, n>0).  As will be shown, 
while the Lambert W function is complex for all values of , for all values of 

 W(n) is real and W(n) = - W(-n).  Further, we define 
 .    (7.76) 
Therefore, (7.75) becomes 
 .   (7.77)  
where Un is the co-efficient of n needed to produce x for any value of y.  
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Inverting the function to its original  
      (7.78)  
and differentiating gives 

    (7.79) 

with the derivative 

     (7.80) 

If we substitute for the natural log derivative, we have instead 

 .    (7.81) 

 
From (7.76) it follows that 

     (7.82)  

and with a little foresight, we might imagine that this hides a complex function, as with  

     (7.83) 

 
Returning to (7.76) for that case in which , and the normalized value of W(n) 
is  
 ,    (7.84) 
where the n in the subscript of x relates that value of x as the unique normalizing value 
for and we have 
 

 .   (7.85) 

It follows that  

 .   (7.86) 

As before, substituting t for x, the equivalent for (7.86) is 

    (7.87) 
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    (7.88) 

            
Since for that case in which , (7.86) becomes 

 ,   (7.89) 

apparently  
     (7.90) 
and the dividend in the first term of (7.86) must be a continuous function which 
approaches 0 as n approaches 0.  Thus for any n, we have a fundamental base en in which 
it can be stated 

 .   (7.91) 

and for the inverse of xn 

 .  (7.92) 

where we define, for conceptual reasons, 
 .    (7.93) 
 
It is noted that the natural log in the second term is specified to apply to the case of (7.89) 
so that for any value x, for the conventional natural log x, or ln x, 
 .    (7.94) 

Thus for any en, we have  
     (7.95) 
and 
 .    (7.96) 
In continuation, we have 
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 .    (7.101) 

It is further noted that  
     (7.102) 
 
For all integer values of , we redefine (7.85) and have 
     (7.103) 

     (7.104) 

     (7.105) 

and 

     (7.106) 

Multiplying (7.104) by (7.101), gives 

  (7.107) 

and it can be seen that the terms on the right are equal to the derivative of xn. 
 
With some rearrangement we have 

 .  (7.108) 

Since the terms in brackets in (7.108) are equal, it is apparent that the differential of any 
variable x of order n, of any function f(xn), is the product of that function and  

   (7.109) 

where the term  is equal to W0(n) and to the principal branch value of the Lambert 
W function for n.  It follows that the derivative of x with respect to the nth natural log is  

    (7.110) 

which normalized to the nth power would be 

    (7.111) 

 
A factor for normalizing to the 0th power, therefore, would be, enn, remembering (7.93), 
giving 

 . (7.112) 

 
where the last term is of the form of (7.75).   

01 ln lnn n
n

d x d xe
x dx dx-= =

( ) 1ln lnn nx x -
- =

0n >
( )0ln

n
ny nU n x x= =

0 0ln ln
n nnU ynx

x x
= =

0 0ln ln
n nU yx

x n x
= =

0ln n
n n

U yx
x nx

= =

( ) 1

0 0

1 ln ln
ln ln

n n
n n n n n n n n

x
nU e d x e d xyD x nx nx

x x dx x dx
- - -æ ö æ öæ ö= = = =ç ÷ ç ÷ç ÷

è ø è ø è ø

( ) ( )
0 0

ln ln
ln ln

n n nn
n n n nn

Udx yx n ne d x ne d x
x x n x- -

æ ö = =ç ÷
è ø

( )0 0ln ln lnn
n n n

dxn nd x ne d x W n d x
x -= = =

n
nne-

( )00ln
ln ln

n
n

n n

W nxd xdx e x x
d x d x n-= = =

( )001 ln
ln ln

n
n n

n n

W nd xdx e
xd x d x n-= = = =

( ) ( ) ( )( )00 00
0 01 ln

ln ln
W nn n n n n

n n n n n
n n

W n W nd xdxe e e e e e
xd x d x n n-= = = = =



 139 

For a negative derivative 

    (7.113) 

the factor is - enn, so that 

   (7.114) 

 
If we now introduce a rotational (imaginary) element into this condition, from (7.86) and 
the above development, we have 

   (7.115) 

   (7.116) 
in which (7.115) and (7.116) are complex conjugates, each representing a unit vector in 
the complex plane, so that 
 .    (7.117) 
It follows that 

 .   (7.118) 

implying 
 .    (7.119) 
 
Thus with substitution from (7.96), using the normalizing factor -ienn, (7.118) becomes 

   (7.120) 

 
Similarly for a clockwise rotation,  
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we have the normalizing factor, ienn, and 

   (7.122) 
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In the above treatment of (7.118) through (7.122), we have used real normalizing factors 
with imaginary sense.  It is further noted that the normalizations shown in the square 
brackets of (7.120) and (7.122), where the left  operates on the right  initial 
condition, , are instances of a type of complex inversion and are therefore 
conformal and are not instances of complex conjugation as shown in (7.117).  In this 
latter case we interpret the subscript as the real exponent, n, of the nth exponential base 
and the superscript as the rotational or “imaginary” exponent.  In this regards we will find 
that 
      (7.123) 
so the determining indication for the rotational exponent is the presence of the i sense.  
Thus we have the following complex identities 
   (7.124) 
where the terms on the right are the complex conjugates of those on the left, all of which 
represent unit vectors whose points lie on the unit circle.  Thus it is not to be interpreted 
in the usual sense of a decomposed complex number, since 
 .   (7.125) 
 
 
We might also surmise that the above normalizations are analytic. The normalizing factor 
inverts first with respect to sense of the nth degree of the exponential base, e-n, on the unit 
circle, which amplifies the modulus or vector length of that base.  This changes (7.117) to 
 .    (7.126) 
This is followed by inversion in the real axis to get 
 .  (7.127) 
where it is clear that the 0th exponential base raised to the 0th power is a unit vector on the 
real, x axis.  Thus complex normalization in this instance amounts to  
     (7.128) 
and complex inversion to  

     (7.129) 

 
which is an amplitwist as defined by Tristan Needham in Visual Complex Analysis.  This 
is the case of the bracketed term of (7.120), which might be represented by multiplication 
of a point in the counterclockwise interior of the unit circle by its reflection in that circle 
followed by multiplication of the resulting vector and its complex conjugate. In the case 
of (7.122), we have such multiplication of a clockwise interior vector by a 
counterclockwise exterior vector, both cases resulting in a unit vector along the real axis.   
 
With respect to (7.89), we see that what appears at first glance to be a singularity is in 
fact an identity of the 0th order.  Remembering that the natural log function maps to the y 
axis and is therefore equivalent to the imaginary axis in the complex plane and isinq, 
using the normalization factor, e00 = 1, and recalling that xn = en 
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 .  (7.130) 

The sense of the 0th powers can be seen as a vector potential or direction, similar to the 
assignment of charge sense in a static electrical or potential field.  
 
Investigation will show that for any n or q, real or imaginary, 

    (7.131) 

Applying the above normalization factors to (7.83), we have 

 . (7.132) 

 
The interpretation of this development is that while the qth exponential base to the qth 
power maps the real number line x to the positive real number line y, the qth exponential 
base to the iqth power or the iqth exponential base to the qth power maps the real number 
line to the unit circle.  Further, whereas there is an asymptote for the former in the 
direction of the negative x axis, the unit circle is both asymptote and tangent in either 
sense for the rotational mapping of e.   
 
With respect to the integer orders of e, it is apparent that each represents a mapping to the 
real number line of an exponential change in n orthogonal spaces.  Thus referring to 
(7.88) in the context of (7.112), we can state the following normalizations of an n 
dimensional t or x 

  and   (7.133) 

 .   (7.134) 

 
Fleshing this out for the first 4 orders of n with conjectured generalization at infinity, we 
have the following table, as generated by Maple, where it can be seen that a negative n is 
simply an inversion of enn to en-n = e-nn. 
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f(n) n 0 1 2 3 … ¥ 
en 2.718281828.. 1.763222834.. 1.531584394.. 1.419024454..  1 

e-n=en-1 0.367879441.. 0.567143291.. 0.652918640.. 0.704709490..  1 
       

enn 1 1.763222834.. 2.345750756.. 2.857390779..  ¥ 
e-nn= en-n 1 0.567143291.. 0.426302751.. 0.349969632..  0 

       
ln0 en 1 0.567143291.. 0.426302751.. 0.349969632..  0 

ln0 e-n -1 -0.567143291.. -0.426302751.. -0.349969632..  0 
       

lnn en 1 1 1 1  1 
lnn e-n -1 -1 -1 -1  -1 

       
ln0 enn  

= W(n)  
0 0.567143291.. 0.852605502.. 1.049908893..  ¥ 

ln0 e-nn 

= W(-n) 
0 -0.567143291.. -0.852605502.. -1.049908893..  -¥ 

       
lnn enn 0 1 2 3  ¥ 

lnn e-nn 0 -1 -2 -3  -¥ 
       

 
n f(n) n ln0 en in ln0 en n ln0 ien  in ln0 ien 
1  0.5671… i0.5671… 0.5671…+ip/2(=+1 ip/2) - p/2 + i0.5671… 
2  0.8526… i0.8526… 0.8526…+i p(=+2 ip/2) - p + i0.8526… 
3  1.0499… i1.0499… 1.0499…+i3p/2(=+3 ip/2) - 3p/2 + i1.0499… 
4  1.2021… i1.2021… 1.2021…+i 2p(=+4 ip/2) -2p + i1.2021… 
5  1.3067… i1.3067… 1.3067…+i5p/2(=+5 ip/2) - 5p/2 + i1.3067… 
6  1.4324… i1.4324… 1.4324…+i 3p(=+6 ip/2) -3p + i1.4324… 

 
In this final table, it is clear that the integers, n, are the count of the rotations of ½ p and 
of the powers and hence the number of orders of i, both indications of a degree of 
orthogonal structure.   
 
The special case of e2 is shown to be of fundamental significance to an understanding of 
the foundations of quantum mechanics.  Thus 
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With respect to a conservative 3-field, here shown for a stress, where the volume 
potential energy density is conserved, a logarithmic change of the tension fields in one 
dimension, leading to a change of opposite sense in the two shear fields,  
  (7.136) 
is therefore 

  (7.137) 
which can be stated by using the coefficients as 
 . (7.138) 
Assuming the change in the tension field is less than unity results in a negative logarithm 
and an orthogonal (imaginary) sense to the transverse fields, giving us 

 . (7.139) 
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