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Simple Harmonic Motion in Classical and Quantum Phase Space

Abstract

In classical mechanics, natural, including man-made, repetitive motion sustained
over extended time frames can be studied using the model of Simple Harmonic
Motion (SHM) in which an oscillator and its support framework is deemed to be a
closed system in that energy, momentum and related properties of the motion are
conserved. In fact no system is completely closed and the energy of such motion is in
some measure damped or otherwise lost to the background of the system. Still SHM
can be closely approximated by driving the oscillation with controlled energy input.
The oscillation of displacement and momentum in SHM can be accounted for
succinctly with the use of planar phase space (PSz) modeling in which the
correspondence of the dynamics of linear oscillation and Uniform Circular Motion
(UCM) is utilized. Accounting for energy, force, action, and power oscillation is
better handled by graphic modeling of sine and cosine wave functions.

In the first section, these models are briefly recapitulated. In the second section they
are applied to an analysis of the energy of the oscillation, through the Hamiltonian
and Lagrangian approach, with the graphic development of the action, via both
Lagrange and Maupertuis, and the power of the oscillation, and their semi-periodic
maximum moments. The two models are synthesized in a three-dimensional phase
space that we are calling PSs. In the process of this synthesis it is shown that there is
necessarily a component of the dynamics that is present even in the absence of
oscillation, an inertial invariant that is both a scalar and vector potential. Finally, the
point oscillator of the initial development is replaced by torsion oscillation as a disk,
which can be represented by PS;. The synthesis also suggests a quantum application
of the modeling. Section three shows the development of rotation of the action and
power moments with attendant torques which sustain the oscillation and result in
the property of angular momentum, with an invariant Lagrangian as well as
Hamiltonian. A review of the nature of body forces and stress or surface forces
models PS3 as a system of rotating stress force and corresponding strain, and the
model is fully developed as an emergent quantum phenomena driven by an
expanding spacetime fabric (STF) coupled with necessary geometric constraints.
The neutron is shown to be the resonant state of PSs. Spin and charge as
elaborations of the angular momentum is developed, along with beta-decay for both
ordinary and anti matter.

The Verification section derives a gravitational quantum, Newton’s gravitational
constant and law, ties beta-decay to cosmic expansion and thereby predicts the
Hubble rate, which is shown to be an exponential rate. In the process the reason for
the neutron-electron mass ratio is developed along with the nature of the missing
mass of beta decay. Finally, the value of elementary charge is derived, with some
interesting observations about the structure of the fine structure constant.

The Conclusion section waxes philosophical, concludes the PS3 model deserves a
proper vetting, and the Asides offer supporting information.
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Introduction

Nature is repetitive. Sure, she always offers something new and is in constant
change; yes she changes, but in recurring patterns. Day follows night follows day.
Summer follows winter follows summer. Heat follows cold follows heat. Given
sufficient breadth of vision most, if not all, linear processes of change prove to be
phases of a bigger cycle, where the extents of the cyclic pattern are found to be the
extremes of some linear dimension. Birth to youth to maturity to old age to death is
linear enough for the individual living creature, but from the perspective of her
species, the line resonates in each and every birth.

A realist would say there is small wonder that those stuck upon the terminating line
of life should look for comfort in the endless circle. Rather, as one who has had
sufficient experience of finding an uncharted route prove to be a roundabout, I
would say there is little reason to be satisfied with the boundaries of one dimension
if one has yet to reach the vista and added breadth of higher ground.

From the smallest of atoms to the largest of galaxies, nature displays herself in
circles and cycles and all manner of recursiveness magnificent to behold. What is
more wondrous yet is that all of this can be understood in an ideal, simplified
manner, in a fundamental form by the concept of simple harmonic motion (SHM) or
simple harmonic oscillation, the changes in position and momentum accounted for
by comparing motion about a circle with motion of the same periodic frequency
along a simple line segment, its diameter. Some examples of physical processes that
clearly embody the concept are pendulums of relatively small arcs of motion,
massive objects attached to springs that extend and compress, and stretched strings
that vibrate in sinusoidal fashion, each in response to some extraneous impulse that
sets them in motion. In reality each of these systems involves inherent components
and external connections that drain away the energy of oscillation over time, but in
the ideal world of the mind, free from such external and inherent interaction, once
set in motion these systems oscillate indefinitely. So we can learn much from an
ideal description.

This discourse is intended for a general readership with some level of technical
education or experience or the ability to gain the same through self-directed effort.
(The Internet is the obvious source of information in this regard. Wikipedia in
particular has excellent graphics, including animations, to help explicate the ideas.)
It is for those with curiosity and will hopefully have something new for novice and
expert alike; therefore, it will take pains to explain some basic concepts in some
detail, while not avoiding the use and some assumed knowledge of special language.

In our description of oscillation, we define the above referenced line segment as 2ry
long, the diameter of a circle with a radius of ro. The naught subscript in this
discussion indicates a unit value, or in some cases characteristic value of the
corresponding property that the letter represents, in this case, a change in position,
i.e. a displacement or length along some linear dimension, such as x or y or q. As



such, ro equals xo equals yo equals qo equals 1 unit of length of some undefined
system of measurement, without regard to the direction it is headed.

To the expert, if | depart from a rigorous notation in this piece with respect to vector
notation, [ apologize. [ assume that the reader knows the difference between a
length as a scalar, i.e. the magnitude of the difference between two positions in
space (or time) as measured by an appropriate scale, and length as a vector, which
adds to this magnitude the direction of the linear difference starting at one end of a
standard or the other. Virtually any scalar can be made a vector by taking its
gradient, the direction it is likely to change in space or time.

[ will mention one refinement in the concept of direction, that of sense, which we
generally think of as the sign, as +x or -x, of a direction otherwise understood. Thus
Xo and yo can be understood as explicit vectors of either sense with respect to the x
and y co-ordinates of some rectilinear system, qo as a generalized vector that may
correspond to any xo or yo or even zo depending upon the defined context, and rp as a
vector of inherently indeterminate or changeable direction and sense.



Simple Harmonic Motion and Two Dimensional Phase Space (PSz)
Accounting for Displacement and Momentum

Let us consider a simple pendulum, a plumb bob at rest, hanging from a string about
a meter long just above a central point, free to move in any angle, 6, of 360 degrees
or 2rradians. We place a piece of paper under the bob with a circle of radius ro = xo
its diameter clearly marked. For future reference we draw a second diameter 90
degrees or %2 mradians from the first, and we extend both diameters through to the
edge of the paper and label one of the diameters +x and the other one +y as in Figure
1. We place the paper so that the center cross hairs of the circle are directly beneath
the point of the plumb bob. The one I am using weighs about a pound and if you
unscrew the collar that retains the line from its top, it reveals a miniature bob
weighing about an ounce, nested away like a Russian doll.

[t doesn’t matter which way we orient the paper, as indicated by the dotted line axes
x"-y’ or what we call them. In fact, we can wait until we set the pendulum in motion,
swaying back and forth along a gentle arc, before we turn the paper so that the x
diameter and axis aligns with the arc of the oscillating plumb bob, designated in
Figure 1 as O;. An ideal pendulum, once set in motion, will swing back and forth
forever. “Ideal” means the system which includes the table and the paper and the
pendulum and the tripod from which the pendulum is suspended, along with the
gravity that makes it all work, is isolated from any other activity which might effect
it. The energy in such system is defined as being conserved, i.e. no energy is lost or
gained from the system. In reality, the oscillation will cover a smaller and smaller
arc over time due to damping and other causes, that is to say, it loses energy to the
air around it and to the tripod through friction and other forces at the strings
attachment. If we are to keep it going, we must drive the oscillation by adding a
small amount of energy, ideally the amount that is damped away, as we might push
a child in a swing to keep her going. In an ideal situation with no damping or driving,
or in a controlled setting with driving offsetting the damping, the oscillation
operates at its resonant angular frequency, which we designate as . The angular
frequency measured in radians, 6, is related to a cycle or single period of the
oscillation, To, and the periodic frequency, fo, by

w ====2rf ==, (1.1)

For reasons both practical and arcane, we will use angular frequency in our
discussion unless noted otherwise.
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Linear and Circular Oscillation

Figure 1

We watch as the plumb bob swings back and forth along the x-axis and across the
center point. At some point, since it is not ideal, the extent of its arc will lessen until
it extends from the +xo to the -xo points where the axis crosses the circle. Notice that
the terms plus x and minus x are simply reference designations to help us make
sense of what is occurring. We just as correctly could have called these points right x
and left X or east x and west x or forth x and back x or any of other terms as shown.
Nor is it necessary, at this stage, that the y-axis have the same sense designations as
the x-axis, though that will change. If we were surveyors, we might prefer east and
west for x and north and south for y.

An interesting thing we note as the pendulum swings back and forth is that for small
arcs, the frequency does not depend on the amplitude or extent of the oscillation
along the x-axis. If we count the number of cycles that occur over a set period of time
when we first set the bob in motion and count again after it has decreased to well
within the circle, the frequency will be closely the same. We might think that if we
change the size of the plumb bob it would affect the frequency, as in my case by
removing the larger outer bob to leave the much less massive hidden bobby. In fact
we find that it is unchanged.



The frequency, therefore, is not a function of the mass or, generally, the force that
set it in motion in the first place. If we shorten the line that is suspending the bobs
however, we find that the frequency increases. If we lengthen the line and hold it off
of the table, the frequency decreases. We find that the resonant frequency of the
oscillation is an inverse function of the length of the line suspending the plumb bob.
It is inversely related to the square root of the length of the line, lyes, and directly
related to the square root of gravitational acceleration at the location of the
pendulum, gpen, as

8
0 = [ (1.2)

0
pen

Squaring this statement and rearranging gives a statement for that acceleration,
_ 2
g = lpenco0 . (1.3)

pen
It is worthy of note that for the pendulum system, the acceleration of gpen is
generally parallel to lyen, or toward the earth, and perpendicular to the angular
acceleration represented by an?, which oscillates about the center of the bob’s
travel, the point of rest or equilibrium represented by the center of our circle. In the
case of 0;, the acceleration vector dips downward near each end of the bob’s travel
and points upward as it passes its point of equilibrium beneath its pivot. Wikipedia
http://en.wikipedia.org/wiki/Pendulum demonstrates this oscillation.

We notice another feature of the system. The plumb bob over time begins to deviate
from its arc along the x-axis and begin to follow an elliptical path, clockwise (cw) or
counterclockwise (ccw). With a little help, we can nudge it into a circular path in a
uniform circular motion (UCM), and we find that for a given length of pendant line,
the frequency in the circular path is the same as the frequency along the diametric
path. Since the circular path is longer than that of the diameter, this means that the
average speed along the circle must be greater than the average along the diameter.
We might suppose that the speed is constant along the circle, while obviously the
bob stops at each end of its diametric travel. It must accelerate back toward the
other end after it stops, and we wonder about its top speed on the way back.

When we study the system carefully, we find that if we had two bobs with equal
pendulum length, one traveling the circular path at O. and one traveling the
diameter at 0, so as magically not to interfere with each other, synchronized so that
they both cross the y-axis at the same time, at any point in time the velocity of O. in
the x direction, i.e. projected on to the x-axis, equals the velocity of O; on that axis. As
shown in Figure 2, their speed, sense and direction along x are the same, and the
maximum velocity of 0, when it crosses the y-axis and is instantaneously parallel to
the path of O, is the same velocity as O..

This coincidence means that the momentum, p;, of O;, which is equal to the mass of
the bob times its velocity, equals the projected momentum of Ocalong the x-axis,
provided Ochas the equivalent mass as 0. Since O¢ has a constant angular velocity



and tangential speed and the same mass as 0, it means that the projected
momentum of O. onto any diameter, including the one on the y-axis, is equal to the
momentum of 0; along x at some point in time. The momentum of O. along y is

n/2 out of phase with its momentum along x, so that the magnitude of the
momentum of O. projected onto one axis can be read by its position with respect to
the other axis. Thus, when 0;is at the origin or center of the circle and its
displacement is 0, O. is crossing the y-axis and the momentum of O; at the origin
position can be correctly read by the position of O. on the y-axis.

11 +y =+p I

I11 \Y%

Transition to Phase Space

Figure 2

This provides us with a convenient analytical tool for investigating SHM known as
phase space. Since the motion of a body or particle in UCM can be projected onto any
arbitrary diameter, we can assign an axis associated with that diameter the
designation g as a generalized co-ordinate, and the axis normal or perpendicular to
it the designation p for the related or conjugate momentum. Conversely, we can
project the linear motion of a one-dimensional oscillator onto an associated circle of
UCM with the same effect, substituting O, for the circulating plumb bob, O.. In the
above diagram, x has become g and y has become p, though we could have done the
same thing to any set of orthonormal axes.

There is an important caveat to this statement. I have said the “magnitude of the
momentum of Oc. .. can be read” and not simply “the momentum of 0.”, because
momentum is a vector quantity. It has a direction, which is determined by the
velocity, the speed and direction of travel of the oscillator. If O. is traveling either cw



or ccw or overhead/underneath for that matter and its projected velocity on x or q is
synchronized with 0;, it will make no difference to O, which way O is circling. That is
to say, in this case at O; we cannot tell whether O is moving cw or ccw. All we know
is that it is moving in the same direction relative to the x-axis as 0. It does make a
difference, however, if we are to use the y-axis to record pj, the conjugate
momentum of O,.. The sense of the momentum p; indicates the direction 0; is
traveling, while the sense of the position of 0, q;, indicates whether 0, is to the left
(negative) or right (positive) of the y-axis. As a result, half of the time p and g will be
of different sense. They will be /2 out of synch or out of phase.
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Phase Space with Simple Harmonic Motion

Figure 3

As seen in Figure 3, this dictates that for SHM in phase space using the standard
configuration for the positive ordinate (y-axis) and abscissa (x-axis), unlike the
paper plane onto which we have projected the traveling point of our plumb bob, Ops
can only move in one circular direction, cw, if we are to read the correct sense of the
conjugate momentum of O; from the p-axis component of the position of Ops. Clearly,
the rotational sense of 0, conventionally given as + for ccw and - for cw in the
Cartesian system or +i and -i using complex notation, is a subjective value
determined by the point of reference of the observer. The same physical oscillation,
viewed from the back side of phase space, as in Figure 4 in which the positive and
negative sense of the g-axis are transposed, would be seen moving ccw, with the
correct relative sense designations for both g and p in all four phases of the
oscillation as seen below.



(It is serendipitous that the font images for generalized displacement, g, and its
conjugate momentum, p, in non-italicized form of some font styles as here, are the
mirror image of each other. If we took this at face value in the following figure, we
would be forced to conclude that ccw rotation is not possible in this view either,
since q appears to be leading p. In conclusion, the sense, direction and extent of
momentum must lead the displacement values by one phase or 7/2 in any
representation, since that is what it does physically in SHM.)
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Phase Space Viewed from Below
Time is reversed
Figure 4

While the use of phase space in depicting the position and momentum flow of a
simple harmonic oscillator is interesting, a greater interest might be the flow of
energy in the system. Such energy is of two types that are transformable one to the
other. In general, they are constantly in flux while their total in a closed system
remains invariant. With respect to the present discussion of SHM, potential energy,
)V, is a function of the position of the oscillator, 0, and kinetic energy, /C, is a
function of its velocity and its conjugate momentum. Therefore in Figure 3, Vis ata
maximum, M, when Opsis at +/-qo where A momentarily vanishes, while Ais at a
maximum, Ao, when Oysis at +/-po where Y’momentarily vanishes. Clearly, the total
energy of the system oscillates as does the oscillator, 0;, and it would be convenient

and elucidating if we could map it onto phase space, so we will start with a few
equations.

As stated, the potential energy of the system is a function of the displacement of 0,
so in derivative form the function, V’(q), can be written as the change in Vwith



respect to a change in g which is equal to the resultant force, 7, which displaces it
and which the gravitational field exerts on O; in returning it toward its equilibrium
position, where the force vanishes at g = 0, as
, dy ..
V (q) = d_q =T=m,{= mOIqa)j (1.4)

Here we have used the dotted mechanical notation for time derivatives, where

dq .
] =— =, velocit
q dt y

2
4= ;ZI = a, acceleration (1.5)
o g

The kinetic energy of the system is a function of the momentum of 0y, so in
derivative form the function, £’(p), can be written as the change in A with respect

to a change in p which is equal to the velocity of 0;,, where @y momentarily slows to 0
at tq,, or

arx
(p)= = 4= a0, (16)
The force of (1.4) is related to the gravitational field force responsible for the
acceleration found in (1.3), as

T=m, = sin(i)(molgpm) = sin¢)(m0[lpena)§) (1.7)
where the mass, m, is the mass of 0;and ¢ is the instant angle between the plumb
line and its vertical direction at rest. Note that according to (1.2), the two bracketed
terms are invariant conditions of the pendulum setup and therefore of the system
being examined, but that transverse force, 7, varies sinusoidally with the oscillation,
as determined by ¢, so that

q=singl . (1.8)

With respect to )] if we assume SHM and no damping or loss of energy, then qo is an
initial condition determined by the force used to displace the plumb bob and set the
oscillation in motion which establishes the angle ¢, which in the context of phase
space is the invariant angle for Ops, or

. 2 2\ .
7= TO Slnq)Ops = mO,quO = (mO,wO )Sln¢0pslpen (19)
A similar statement can be made for A as
€ =¢,sing,, = q,0, =sing,, [, 0. (1.10)

We should note that the conditioning properties and parameters, gpen, lpen, o, as well
as the initial condition that establishes ¢, are not a part of phase space, and in fact
are orthogonal to, i.e. outside it, just as the tripod, table, string and earth are outside
our Figure 1-4 paper planes. Those familiar with such things will recognize that the
term in brackets in (1.9) has the form of the spring constant, ks, of Hooke’s Law for



elastic bodies in compression as in a spring-mass mechanism exhibiting SHM. I have
not included any graphics of this mechanism, which are easily found on Wikipedia
and elsewhere on the Internet.

In the case of such mechanism for which ks is a measure of the stiffness of the spring
material, the restorative force of the spring, 7, after compression or extension is
equal to ks times the strain or change in length of the spring, which would be go in
phase space. The spring constant then is

k, =my o, (1.11)

Unlike the pendulum, for which the restorative force of gravity is operating normal
to the plane of phase space and the line of the initiating force, it first appears that
the initiating and restorative force are anti-parallel in the case of the spring-mass
mechanism; that is, parallel but of opposite sense. Careful analysis shows, however,
that in the case of the spring, the equivalent of the gravitational force is actually
distributed throughout the spring, normal to its travel, so the mechanisms are
analogous. The spring at the points of maximum extension and compression stores
the maximum potential energy, 15, and the oscillating mass, at the point of initial
rest, exhibits the maximum kinetic energy, Ao, which are expressed here as
characteristic, unit values.

One other mechanism of SHM that exhibits some of the features of both spring-mass
and pendulum oscillation is that of a transverse wave on an ideal stretched string.
We do not include any harmonics of such wave action in this analysis and assume
only a fundamental characteristic frequency in keeping with SHM. Such a
mechanism has two primary conditioning properties, tension stress, f;, or force per
unit area, and inertial density, p, mass per volume of the oscillating medium. In the
case of a string, which is modeled along one dimension, the cross-sectional
component of the stress and the planar parallel component of the volume in the
density cancel in the following equation and we are left with the tension force
parallel to the string, 7, and linear inertial density, 4, in their determination of the
square of the transverse wave speed as

%/41 (1.12)
Ao

From (1.10) we can see that for a given instance of SHM of frequency, an, we have
the following
= G = (1.13)

o

90
2 Tt
k,=m, @, =—+ (1.14)
9o
showing that the spring constant can be understood as the linear force density of

the oscillation medium, be it gravitational field, elastic continuum/body or stretched

10



string, where the linear unit is expressed in terms of the characteristic
displacement, qo. There is a difference, however, between the oscillating string and
the other two examples of SHM in that the mass, m, in the first two examples is that
of a separate body, the plumb bob and the oscillating weight, both of which generate
a body force, Fp, due to their initial acceleration, a, from rest according to Newton'’s
second law of motion

F,=ma (1.15)

The oscillation media or fields, i.e. the gravitational field/pendulum line and the
spring, respond in equal and opposite direction to Fp, according to Newton’s third
law of motion but as instances of stress force 7. In both cases the body force of the
massive object moves transverse or normal to the stress force, which is a tension
stress force. In the case of the pendulum, this transverse motion is apparent. In the
case of the spring, it may be less obvious, but the tension in the coils of the spring or
the molecular bonds of an analogous solid elastic body that provides the restorative
force is oriented normal to the travel of the massive body.

The relationship between the tension force in the oscillation field, 7, and the
transverse force of the oscillating body, 75, can be described as the operation of a
stress field, a type of tensor field. A tensor is a mathematical description of the way
forces or velocities or other properties distribute in space and time, as when you
swing a mallet down on a tomato and watch it explode out on all sides. Try this. It’s
fun in a juvenile sort of way.

A tensor is essentially a description of redirection of some conserved property often
involving rotations and is therefore an elaboration of trigonometry. A stress field
has two essential components with their corresponding forces,
tension/compression, directed normal to the surface of a small unit volume of space,
and shear, directed along the edges and in the plane of each surface of that unit.
Since stresses describe the relationship of a force to some surface area, those stress
forces are also called surface forces. A good example of the interaction between a
body force and a stress force is a person jumping on a trampoline.

In the case of SHM on an ideal stretched string, the mass is the mass of the string
itself, of the oscillation field, and the force it exhibits is a stress force. Whatever type
of force may displace the string and initiate the oscillation, its ongoing SHM is an
oscillation of stress forces in which a portion of the longitudinal tension stress
transforms to transverse tension stress before recoiling in alternating direction to
either side of its position of rest. It is like the trampoline bouncing back and forth
sans person, like a drumhead. In this case the transverse force of the oscillation is

T, =—cos0t, = tisingr, (1.16)
There are two generally recognized types of waves on a string, traveling and
standing or stationary. Traveling waves are customarily modeled on an indefinitely

11



long string, so that their shape is that of a graph of the sine (or cosine) function of an
angle, 6, as it increases from 0 through one cycle of 360 degrees or 2z radian, with
the function of ¢ mapped with respect to the ordinate and the angle mapped to the
abscissa. If the angle represents an event rotating or cyclically occurring at a
uniform rate, i.e. UCM, the abscissa can represent time and time can be measured in
radians of either cyclic or linear change. A snapshot of a transverse wave in time and
over an interval of space looks like such a graph and a video over time exhibits SHM
at each point along its length. The result is the familiar sinusoidal wave of Figure 5.

A wave traveling on a string of finite length will eventually reach the string ends,
which we assume to be rigidly fastened to immovable objects, so that the oscillation
is not damped. The wave is reflected at these ends and begins to travel back down
the string toward the other end. Waves traveling in opposite direction reinforce and
cancel each other as they interfere, according to the wave half-length, 7qo. The
points of cancelation form nodes where the string exhibits no transverse motion,
every mqo, and antinodes or points of maximum displacement at the half points
between each node. If we have some very precise grips, we can clamp the nodes in
the following graph at -z/2 and 7/2 along the 6 axis and the point at go will continue
to oscillate in SHM. If we view this graph as a physical half wave in motion with
respect to axis 6, the graph of p between 0 and 27 maps out the conjugate
momentum for g, starting from its position at go for 6(0).

We should not loose sight of the fact that within the context of a one-dimensional
oscillator, momentum is always in the same direction as the displacement over time,
as seen here, though their magnitudes, p and g, are still out of phase by /2. The
following phase graph Figure 5 shows both p and g map to the ordinate and the
phase propagation, 6, over time maps to the abscissa. The phase space diagram
above then rotates the g and 8 dimensions from the phase graph clockwise t/2, or
using complex notation, by a factor of -i; ¢ mapping to the abscissa and 8 mapping
to the circle contour at a distance of |ro| = [po| = |qo| = +1 from the Phase Space
origin.

pe | @8 7 11 11 I
+p;+q S G i
+6
( A
-P,=q “p ol i
—1/2 0 n/2 n 3n/2 2n

Phase Graph of Momentum, p, and Displacement, g
p=sin 0 po, q =cos 0 qo

with counter-clockwise phasing and sense of function determined by standard Cartesian co-ordinate system

Figure 5
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From this it is straightforward to define a two dimensional phase space, PS2 = 6,
where 6= 0 lies on the positive abscissa and the senses of the trigonometric
functions are taken from projection onto the appropriate co-ordinate axis of a
complex plane, where po = +iqo

r (6)=r,e” = g, cos0+ig,sinf (1.17)
It is important to the following development to emphasize that 6 is essentially a
clock and at time 8 = m, the direction of time in phase space with respect to the
conjugate momentum has reversed itself from its initial direction at time 6= 0. In
other words, in such a phase space, time oscillates.

Finally, as those musicians who play string instruments will know, a string doesn’t
simply oscillate in one dimension normal to the string, as in the plane of the phase
graph. It is free to move transversely all about the string, and we can imagine an
ideal condition under which it moves in UCM about the position of the string at rest.
Under these circumstances the point qo circulates in the manner of Ocand Oy in the
above diagrams, clockwise and counterclockwise depending on the end of the 8 axis
from which it is viewed.
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Simple Harmonic Motion and Three Dimensional Phase Space (PS3)
Accounting for Potential, Energy and Time

Let’s next consider a simple harmonic motion or oscillation (SHM) in PSz, where,

p g =r=1, 2.1)
1l +p I
2rql=rt= P
pPai=ry=1 5 A,

I -p v

Phase Space with Hamiltonian

Figure 6
In Figure 6, the square designated as the product poqo represents the total energy or
Hamiltonian, 7 of the system that cycles about phase space at the cyclical frequency
av, 2, for an invariant energy of
= pyqo®, =1. (2.2)

Since the total energy of the system is conserved, this means that the Hamiltonian is
equal to the total, at any point in time, of £'and »Ywhich oscillate sinusoidally, as

H=K+|V| (2.3)
The absolute value for Vindicates that the potential energy is always negative due
to the fact that its components 7and g are always of opposite sense, while Ais
always of positive sense, since its components p and c are always of the same sense,
as seen in Figure 9. In these graphs p and c are represented by the same line. For
both I and V the two components are always of the same relative magnitude.
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The Hamiltonian is related to another relationship between A and )/, the
Lagrangian, £, referring to (1.4) and (1.6), though in this case Ais defined as a
function of the rate of change in g over time instead of the momentum, as
£=L(q.q)=K -V (2.4)
and since A 'and Voscillate in magnitude between 0 and 1 out of phase with each
other, it is clear that the Lagrangian is not invariant, except in a case of UCM in
which V is the scalar invariant product of 7,7, and Ais the scalar invariant product

of PyunCown » taNgential momentum and velocity. The product poqo has the units of
action, & which is generally defined as the time integral of the Lagrangian, £,

S = j:fc(q,q)d; (2.5)

but is also defined as by Maupertuis as the displacement integral of an impulse, 7,
— (%
S, = L,, J(q)-dq (2.6)

the impulse being the time integral of a force which is equal to a change in
momentum, Ap,

J = ff}“(t)dt =Ap (2.7)

Thus, in the context of SHM in phase space, the integral of the change in momentum
over the displacement path of the oscillation is equal to the time integral of the
Lagrangian over the same path. Let’s see how this graphs out using the sine/cosine
functions with respect to Maupertuis.

po 1 @ qy I 11 I
g e .
3 / N \\_ y ¥ H
-P,-q “p /
—1t/2 0 /2 T 3n/2 21
Phase Graph of Action
S=pq
Figure 7

In Figure 7 we see that the action varies sinusoidally at twice the frequency and half
the amplitude of the phase cycle, peaking at mid phase in each direction. We can add
the force graph to this in Figure 8, which is the inverse of the g graph, and plot the
power of the oscillation, P, which is the product of the force and velocity, the latter
being the same as the momentum graph or

P=1q=1c (2.8)

15



po 1 P 1w 1 )| I

p ) q /_;/’ {Z) ‘\\\ Ve o /::/
: ¢ Re. | 20 VX
+0
».-_/ '\\ A
Prq ! GG | o |
—m/2 0 /2 n 4 3/ B

Phase Graph of Force, 7, and Power, 7
r=-cos 8 qumw?=-mon’q
P =1c,wherec=p/m=qo

Figure 8

[t is clear that the power graph is the inverse of the action graph. We can next plot
the kinetic and potential energy curves, which will also give us the Lagrangian, the
green curve in the first graph, and the invariant Hamiltonian shown in the second.

+p,+qp«° 1 4 1w I;{K II/L’ I
R/,
pea TN

-m/2 0 /2 T 3n/2 27
Lagrangian: £ = £ ~|V|= £+) (Green curve)
po qo ) [¥] Fo
+p,+q 0 \ZZ  dL I
.,
_p'_q +E -M +E A +I&
—1t/2 0 /2 o B 3n/2 27

Hamiltonian: #o = /€'+| Vl (Invariant red curve)

Phase Graph of Kinetic, £, and Potential, », Energy
K =pc=sitf @ poco, ¥V = 7q = -c0s*0 7oqo
Shaded areas are phase integrals of Kinetic (gold) and Potential (red) Energy.

Figure 9

The next few graphs show some integrals and areas under the curves for reference.
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Fundamental Single Cycle Curves
Momentum, Displacement, Force (shown), & Velocity

i n 7 I
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Derivative Double Cycle Curves
Action, Power (shown), & the Lagrangian (shown, full amplitude)
Various Integrals/Areas under the Whole Curves
Figure 10
P29 v i
OGS
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Single and Double Half Cycle Curves
Displacement, Action , Power, & the Lagrangian shown

z_1
472 é

z 1 = 14
2 0 9Z2nm2 ?2 =n 3n/2 2n
Lagrangian, Kinetic and Potential Energy Half Cycle Curves and Components

Various Integrals/Areas under the Half Curves

Figure 11

Obviously, the action varies over the range of each quadrant, as seen in the
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following graph, though its total is invariant from quadrant to quadrant, as

0 . 0 X 0 |
S=p[ da=pi| di—pa| dt=pa=4p,g, (2.9)
%
PRy 9y 111 I, I
+p+q e~ S
o N S Y /, \\ ( 7 \\\\ 7 x
2™ / \\‘ \‘\!
il , 0 .‘ +0
| \\\ / Y \
; \
prq | T | e LA | TN
—1t/2 202 /2 I8 3n/2 2%

Action (and Power) using the Lagrangian Time Integral

po q0 5 P q
tpqh & W ome P
£ | A = %
- +60
_p’-q . i \*\ __/ : \\‘\,,\_
w2 B0 M ogp o M ogaptE oo

Action (and Power) using the Maupertuis Displacement Integral of Momentum
Action and Power Integrals with related components

Figure 12

The action due to Maupertuis and that due to Lagrange offer different pictures of the
energy transformation of the oscillation. While Maupertuis is an integral over the
displacement path, the filled areas of the curve show that the action and its inverse,
the power of the oscillation are in operation throughout the cycle, i.e. over time,
peaking with their rate of transformation greatest, at the half point of each of the
four phases. While Lagrange is an integral over time, the filled areas show that the
action is concentrated in space at the center point of the oscillator’s path as an
expression of kinetic energy, with the power concentrated at the extremes of
displacement as an expression of potential energy. This will be important later in
our discussion.

Next is a direct comparison of the graphs of Maupertuis and Lagrange for one phase
of the cycle as
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2 0 2 - 0 /2

Action Power
E and M are Moments of maximum action and power and therefore of
maximum transformation between kinetic and potential modes at E and
vice versa at M of energy, mechanical, electromagnetic or other.

Comparison of Lagrange and Maupertuis

Figure 13

We would next like to apply this to phase space to see what it tells us. All images in
Figure 14 show the condition in phase I at the moment of maximum action (and
power charging) at the point +E, where the designation indicates that it is a
potential energy/mechanical analog for electrical charging or capacitance. In Figure
13 above, the -M indicates a moment of maximum power (and negative action) in
the kinetic energy/mechanical analog for electrical discharge and magnetic
inductance. The moment senses indicate the direction of travel of the oscillator.

I +p Poqo= 1 | I +p Poqo= 1 |
+M ﬂ ( +E +M pO ( +E

iB( Z%) poqo // 9 (5—%) poqo
| !
: {qo +q -q q,*q

Pq =3 pogo 7~ pa=3peq
_1
11 -p| T€ =2 ToCo 1y 11 -p 1\
Maupertuis 11 P poge=1 |

= pa=3poqe
m  -p v

Action/Power in Phase Space
Lagrange

Figure 14
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There are two configurations shown for the Lagrange method. The unit squares
representing the energy of the system are positioned so that the square area in
quadrant I is equal to % of the total as are the diagonal-halved red and gold sections
of each. For Maupertuis this is equivalent to the area under the curve above. In this
scenario, the unit square pivots around the center of the circle clockwise.

The fact that we are dealing with an invariant quantity, poqo, suggests that we might
want to plot the product as a hyperbolic curve to phase space in each of the four
quadrants. The following Figure 15 shows that beyond the colored range of the
kinetic (gold) and potential (red) energies, here along the positive axes, the values
for p and q exceed the system constraints as the curves approach each axis
asymptotically. The solution is to collapse the hyperbolic curves toward the circle
center with a bit of origami, by folding forward along the axes and backward at the
lines that cross the curves parallel to the axes. Make a copy and do this, which
represents the elements of the oscillatory field that are orthogonal to the phase
space. The peach sections are duplications of the adjacent kinetic and potential
components, which fold up against them as the four quadrants are brought together.

p

[11

Inertial Invariance Superposition

orthogonal to Phase Space
Figure 15
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When folded, the center square inside the circle and composed of four smaller
squares folds in eight triangles upon itself, and represents the inertial potential of
the system. The geometry of this arrangement, which arises naturally in this
scenario, is such that when the hyperbolic curves intersect the phase space circle as
shown in Figure 16, with the unit square offset as shown, the area of the rectangle
when the kinetic is at a maximum is unitary and remains so as the distal vertex
moves along the hyperbolic curve between the p and q axes to the position of
maximum potential energy. This energy flow is shown in Figure 16.

e F 0=poqoo
- 0
M B

sE aM Py 4B
M .
A of |
/ ///T\\ 0
O > o . ~le

S |//:?0;\

)/ +£ M Py +E

X0,

|
/ N\ 7 v=poqocoo N
#o=|pg| @=L ; Ho=|pq|wo=Vo

Phase Space, # =-5  Phase Space, @ =—5  Phase Space, # =—a.  Phase Space, =0

/ » /
g4
Phase Space, #=a  Phase Space, 0 = -a+§ Phase Space, 6 = a+5 Phase Space, 6 = a+n

Energy Flow in Phase Space

Figure 16

Here the off-manifold or extra-dimensional components of the energy are shown as
Orotates about the phase space with the motive end of the rectangle moving along
the hyperbolic curve in the extant phase. This is indicative of the three dimensional
nature of the energy. The importance of this contrivance can be seen in the next
chart, Figure 17.

In the first figure at the upper left we have a superposition of the kinetic and
potential energies of the oscillation, with the defining physical property dimension
components of the energy and phase space shown on the dimension lines. In the
upper right we have the condition if the oscillator was stopped at its point of
maximum displacement with a retention of potential energy. Manually returning the
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oscillator or oscillating medium to its point of equilibrium, stops the oscillation,
thereby removing all kinetic and potential energy from the system. However we are
still left with an invariant inertial potential component of units mass-displacement.

Ko=—iNoan=qo P Ho=FoCoo 0 F0=FloCo o
+M \ p { i
<1 \
=t
(= qo
= - 2
| S Vo= T’ -qo
[ Do |—@ qo
Alternately v I* [ »
Energy Superpo.sition of X and V on Phase Space Stopping the Oscillation at q,,
reveals an inertial invariant of both, I, tav. removes A and leaves only V, as a vector potential
All the functions of an oscillation can thereby be defined
as the product of the inertial invariant and
the angular frequency and wave number. Here, a few: F o=DoCoo
2
Do = Moo= Moo To= —loWo e +M Py +E
Do = Mokl Po= —Io@o= —1MoQo -
c=a=2 Zo=—IMotwo 1 \
0= Q=K
So=NosCo / N
m= Dok ¥ et e
2 g
The Hamiltonian is the total energy:
Ko=—INoan* o Vo= —l‘;oa)oz-QO Mo = Moq
& 2
=— . a= —7los
Ko I'ZnCo go s Voa 0:G oo s P e
Ko=—io*Coo Vo= —Moqo- qoao pe N

. s 2
Ko=—1Soan Vo= —moco Returning the Oscillator to rest

removes » but still leaves 1, as an inertial potential
Inertial Invariance in Phase Space
Figure 17
This inertial invariant, which I am calling £, (tav), can also be understood as the

invariant ratio of the mass of the oscillator and its angular wave number, x, which
is conjugate to the frequency as

K, =20 (2.10)
c
somy =0K, (2.11)
shows that with SHM mass is essentially the wave number of the oscillation. In
addition, the invariants Sy and co are related to the inertial invariant as
n= S (2.12)
o
In a quantum application, this is
n= h . (2.13)
c

Here 7 (h-bar) is the invariant quantum of action of quantum theory. The value in
this development is that the various functions of the oscillation we have discussed,
in addition to several others, can be stated in terms of the inertial constant and the
various orders of derivatives and integrals of the frequency and wave number using
the Euler identity, without recourse to extraneous properties. Figure 18 gives such
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frequency derivatives, followed by a second chart combining frequency and wave
number derivatives and integrals.
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This next chart gives the equivalent properties of the functions. See the Matrix of PS3
Functions and Invariants chart after the Conclusion section for another
representation.
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Phase Space & Time Functions - Uniform Circular Motion
Figure 20

Figure 21 maps the energy of the previous graphs in phase time to 2-dimensional
phase space. The arrows for the kinetic phases (gold) and the potential phases (red)
in the upper left graph are a mapping of the motion of the oscillator up and down
with respect to the space ordinate as at 0, and to the right over linear time, thus
completing the sine curve path. The second figure on the upper right reverses the
direction of the flow at each of the E and M moments to collapse the first into a
cyclical time arrangement designated by the phase/quadrant for superimposing
onto a cyclical phase space. The reason for this is found in the fact that the direction
of increasing potential energy is always counter to the direction of increasing kinetic
energy as in a gravitational field. Following the red arrow from either of the E points
in this figure to the adjacent M moment and then by the gold arrows to the next E
moment is the equivalent of lifting an object in the terrestrial gravitational field and
releasing it to fall back to earth. The work of lifting is done by the action of the wave,
twice per cycle. The reversal of polarity here is a unique and necessary feature of
SHM, which indicates that within such a closed system, time is cyclical. In the final
figure the collapsed graph is superimposed onto phase space, which has transposed
q and p axes so that the senses of the two depictions are synchronized with the
displacement and the momentum.
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Figure 21

Thus the potential energy that is a function of displacement is graphically
superimposed on the regions of greatest displacement in phase space and the
kinetic energy that is a function of velocity is graphically superimposed on the
regions of greatest momentum and oriented in the general direction of positive
momentum. Note that the rotation over time is now ccw, but this is only for phase I
and IV, at which point it reverses from III to II.

We can now begin to clear up some features that may have been apparent to the
reader earlier. Figure 6 shows the total energy of the system as equal to the unit
square, which overlaps the boundary of the phase space and the single phase or
quadrant area of 7/4. In Figure 9 the same total energy is depicted as the straight,
therefore invariant line 7/ equal to one, while its £'and ) components are shown as
integrals, as areas under the Lagrangian curve, each equal to /4. Obviously some
interpretation is in order.

7 is correctly shown as an area in Figure 6 as it is extra-dimensional to the linear
dimensions of p and g and in fact is dimensionally the product of these for its two
components as

H =K +V =4 pg+|pg = pyg,, (2.14)
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In phase I, £ goes from 1 at po to 0 at go and }’goes from 0 at po to -1 at qo. At the
mid-point between the two, +E, each are equal to ¥2 poqoao.

As shown in Figure 9, the line 7= po = qo = 1, is the absolute difference between the
A and Vcurves at any point in time and any point in the phase graph. The
Lagrangian, £, on the other hand is the relative difference between the A£"and V
curves, relative to the ground state represented by the 6, time axis. Thus £is zero
when the distance from 6is the same for both components. Though the (straight)
curve in this figure for H equals 1, the integral for £'and V’shown by the gold and
red areas under the curves are 7/4 each and 7/2 for the area under the Hamiltonian,
which is obviously greater than 1. This is because the line represents the value of 7
over time, i.e. at any point in time, which happens not to change, and the area under
the curve for each of £'and Vrepresents the magnitude of the phase space over
which the energy ranges, 7/4 for each. Looking at the top graph in this Figure of the
Lagrangian, it is evident that the areas of red and gold that are not between the
Lagrangian curve and the @ axis and which equal /4 minus %2 each, as seen in
Figure 11, cancel leaving the %2 values each for the action and power, which is net
kinetic and potential energy for a total of 1 or the Hamiltonian. We can see the
symmetry in the following in which the action is differentiated and the power
integrated with respect to time.

H=iSw,-iPo, (2.15)
Morphing the colored integrals in the lower graph of Figure 9 by pulling the base of
the vertical line for go where it crosses at 6(0) to the base of po at 6(-7/2), and
repeating for the next three phases, then rotating as in Figure 21 gives us the
following:

Collapse of £ & V Integrals to Phase Space

n/8 of each in each phase

Figure 22

Note that the area of the region in each phase represented by £ and }are each one
half of what they are in the phase graph of Figure 9. We are getting close to a
breakthrough. While our phase space representation, PS>, so far has been two
dimensional, the superposition of the energy component of an oscillation suggests
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we look for a three dimensional representation, PSz, or at least a two dimensional
representation in spherical space, i.e. on a topological 2-sphere. In fact, the surface
area of a sphere is twice the surface area of a circle if you count both faces of the
circle’s disk. This means that an octant, which is the equivalent of one quadrant of a
one sided phase space, has an area of /2, which is the area under the curve of 7% in
Figure 9. In the phase sphere we are creating, the line for the Hamiltonian becomes
a geodesic or great circle for the sphere and the area under the Hamiltonian curve
for four quadrants or an area of 27, is one half the spherical area and represents the
energy/action/power integrals over one cycle of time and one hemisphere.

To construct PS3 from the Figure 21 bottom figure, we pick up the left and right
sides of the energy path from the intersection of the circle and p-axis, folding along
the g-axis, and pinch them together at the apex of the hemisphere, like a phase space
taco. We also rotate the +p-axis and the phase space circle around the g-axis as
shown in Figure 23. Note that the point at which the taco is pinched together is ro
from the
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Superposition of Energy Phase Space and conventional Phase Space
for Reciprocal Path Oscillation

Figure 23

center of the rotated phase space and the phase sphere and that it is at the point in
phase space where q is zero, that is the oscillator, Ops, is at zero displacement. Note
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also that the point at +p where the taco is pinched and along the radial behind it, the
left and right halves of the phase space are sealed together, creating and separating
the upper and lower sections, so that as Ops cycles around the taco edge, it crosses its
own path at each half cycle as one might draw a figure 8 with one stroke instead of
drawing two circles.

Figure 23-A shows the view from the +p-axis on the surface of the hemisphere. Each
of the spokes has length ro, originating at the center of the space and terminating in
the oscillator path for Ops, and is separated from the one on either side by a 5 degree
segment of the space. There is no significance to the 5 degree magnitude of
separation other than as a convenient way of dividing and depicting the cycle in the
creation of the graphic. There is significance, of course, at the transition between the
red and gold radii, colored blue and cyan, at /2 separation midway along the path
in each quadrant, as they represent the E and M moments of energy transitions. The
oscillation moves through each of the segments in the same interval of time. The
colors are as in the previous graphs, red for potential and gold for kinetic,
corresponding to the energy phase being transited by the oscillator Ops.

Figure 23-B is a view from the great circle boundary of the hemisphere, parallel to a
newly defined z axis. Figure 23-C is the view from the +g-axis. Finally Figure 23-D is
an angled view from the gz plane. Ops follows the same general path on the upper left
figure as the arrows shown in the bottom figure of Figure 21. The geometry as
shown is accurate and not simply suggestive as with Figure 21. The path starts at
+po at O(-r/2), arcs through +E to +qo at 6(0), returns through -M to cross itself and
the original phase space circle at +po, 6(7r/2), before arcing through -E to -qo at
6(r),through +M to complete the cycle at +po, 6(37/2).

Note that at each pass through +po, Ops is traveling in the +z direction so that the
total path generates an angular momentum vector parallel to the +g-axis through
the center of the lower circle in 23-C above the point, +p. As Ops moves, it rotates PS;
with it along the path, pivoting it around the g-axis, so that with each two octant
path, PS; completes a 7 or one half rotation and flips its surface orientation, here
from left to right. Oy, travels at a constant angular velocity in PSz, and PS; rotates on
edge at the same constant angular velocity in PSs.

Aside #1
A reading of Aside #1 at this point is recommended, but optional.
End of Aside #1

Figure 23 is a depiction in PS3 of a linear oscillator, O, in PSz. The energy
relationships remain the same from our earlier discussion, in which the Hamiltonian
is invariant, the Lagrangian oscillates between +1 and -1, and the oscillator passes
through four maximum action/power moments, two mechanical capacitive and two
mechanical inductive, over each cycle.
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It would be interesting to see if there is a corollary in PSs to the UCM of Oc in PS..
Remember that in that instance we had a uniform angular velocity and a constant
displacement magnitude of ro, therefore a constant potential energy with respect to
the center of motion of, 1§, and a constant rotational kinetic energy of Ao, therefore
an invariant Lagrangian of zero. Every possible point, O, on the circle of motion in
PS: is a +qoi, -qoi, +poi, and -poi along with every point in between with respect to
some set of axes, gi-pi,.

We might imagine, therefore, that each of the radii shown in the 4 figures of Figure
23 represents a radius of intersection with respect to different paths along the
surface of PS3, each with its own phase space, PS»;, and its own point of maximum
conjugate momentum, po; at the location +p;, forming a circle, C., in the zp plane. All
share the same radius of maximum potential at +qo; and -qoi and each and every PSy;
intersects at and rotates in unison with, i.e. at the same frequency as, the g-axis or
rotation 6. We will call this rotation, ¢, a rotation not of a point in PSz, but rather of a
disk PSz normal to 6. At any point in time, four paths of oscillation, whose points of
zero displacement on C.p are /2 apart, are at one of the four action/power
moments, +E, -M, -E, and +M, so that these moments rotate in unison with 6,

which rotates to the right hand rule as an axial vector parallel to the +g-axis. Each of
the paths has an anti-path or polar opposite, defined as the path with an equilibrium
point wapart on C.p, so that they share the front and back sides of a common PSg,
though the Opsfor each are wapart in their cycle. Thus the two back-to-back PS;’s
incorporate the instant +/- E's, and +/- M's, which creates an effective armature, a
disk formed by the instant PS,’s that rotates on end with 6, and in turn rotates about
an axial vector, ¢, orthogonal to 6, its ends intersecting the circle, C.p, creating two
torques of opposite chirality along the circle as it rotates.

[t is important to point out that the pair of PS;’s just described, which we will call
disk ¢, are the only “real” PSz’s in the system, as each of the others is simply a 2z
circuit with respect to a reference point on the circumference of disk 8 designated
+pi = Opsi, indicating where 6 crosses Cp on its path. Each such crossing is unique to
the circumference of 6, and there isa 1 to 1 correspondence between their
circumferences. Thus the path of each O, traces a path as seen in Figure 23 on the
surface of the sphere PSg, as disk ¢ rotates on its rim with 6 and about its axial
vector in PS3. Thus the 6 of our original PS; in the zp plane becomes ¢ after rotation
into PSs.

Figure 24 shows the superposition over one cycle of the paths of two such PS>’s
separated in ¢ by /2. In this representation, the induction moments, +/- M, of the
original path of PSz(-7/2) are coterminous in PS3 with -/+ E, the capacitive moments
of PSz(x), which leads it in space and lags it in time by /2. The co-incidence of these
moments is therefore separated in time by one half cycle. The inverse or negative
paths of these two PS;’s can be seen in 24-C, completing the cloverleaf pattern. Each
PS; and its inverse are co-extensive in phase time, but of alternate sense, i.e. they
have an angular separation of 7 in phase space.
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II
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for Cyclical Path Oscillation (Phase Space Rotates as ¢ about +q/-q Axis)

Figure 24

[t bears emphasis that the action/power moments are contiguous with, in the plane
of, disk ¢, but remain fixed over time at an angular displacement of /4 from both
the 0 / g-axis and the plane of circle C.,. While they rotate with 6, it is the rotation of
¢ about its axis in the zp plane that actually advances the moments and thereby the
rotation of 8and not the other way around. This advance constitutes a tangential, in
terms of our phase graphs, longitudinal momentum component of the otherwise
transverse oscillation of the O, between +q and -g, which generates the angular

momentum of 6.
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Simple Harmonic Motion and Rotational Oscillation or Spin Space
Accounting for the Generation of Spin and Charge

If we were to sum up all the paths over one cycle of PS3, by summing up the paths
around the g-axis, it would look something like the views in Figure 25. The
similarity of 25-A with Figure 22 is clear. The concentration of the potential energy
components about the +/- q poles and the g-axis and of the kinetic energy around
the +p circle is instructive. The persistence of the action/power moments is also
clear. This indicates the invariant, maximum value of the action and power of the
oscillation over time and the energy fields indicate the invariance of both V’and A
and hence the existence of an invariant Lagrangian of 0, as

£:K_|V|:|po%|_|po%|:0 (3.1)
The Hamiltonian is obviously invariant. In the earlier case of (2.14) we had
determined a Hamiltonian of 1 and therefore an average V’and A each of %. In the
case of PS3, the energies are doubled due to the presence of the inverse components
of the phase space paths as seen in 23-C, thus »and A each equal 1.

H:/C+|V|:|pOQO|+|pOQO|:ZPOQOw0 (3.2)

i~ Single Phase Space Path for ¢ =-7/2
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Action/Power
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C Isometric View of Energy Cycle

Superposition of Phase Spaces over Whole Energy Cycle
for Cyclical Path Oscillation (Phase Space Rotates as ¢ about +q/-q Axis)

Figure 25
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The action/power moments as shown in Figure 24-C have an orthogonal projection
along any +p co-radial in the zp plane of )5 and as in 24-A, along the +/-g-axis of

V75 . With respect to its initial position in C.p, each moment, +/-M; and +/-E, has an
orthogonal distance to its +pi(-7/4) radial of 3/ and a distance from the PSz center
to the projection along the radial of )4 . Thus, the sine of the angles € and u between

each moment and the equilibrium radial at +pi(-7z/4) of +/-K is 3/ and the cosine is
¥ . This is depicted in the following Spin Diagram 1 of Figure 26.

SU=5inE 5}1—;
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g W Y A
0 W/ T
f + | path
9. INJLCTIVE _L ¢ - CAPPCITVE
s

Potential - Kinetic Eneray Cyde
Electrical - Maanetic Enerau Cucle

Figure 26 - Spin Diagram 1
Those with a more technical background will see in this last paragraph a suggestion
of a quantum interpretation of this model and they would be correct. The action in
the quantum case is Planck’s reduced quantum of action or 7 (h-bar) as previewed
in (2.13). We must ask then, just what is it that oscillates to produce a quantum PSs.
The reader might be tempted to suggest a lepton or perhaps a quark field, but we
will pursue a more classical approach, and to do so we will need to take another
aside, this time into an analysis of stress.

In the description of the creation of the PSz model for a linear oscillation, 0, we
referred to Figure 21 as a jumping off point from our discussion of phase space and
the phase graphs in the interests of continuity by showing that PS3 was a natural
extension of that discussion. We will now look at another way of developing that
model for a cyclical oscillation, O, from a discussion of stress.
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Aside #2

A reading or review of Aside #2 is recommended at this point.
End of Aside #2

Based on the aside comments concerning stress, strain and elasticity, we can state
that the theory of general relativity models space as an elastic medium, albeit
coupled with time so that the stress tensor has an additional dimension, that of time.
In that theory, particles of matter and energy couple with spacetime in a manner
that warps or distorts, i.e. strains that spacetime, resulting in its curvature. Such
curvature in turn directs the motion or travel of these particles along geodesics or
energy conserving paths through spacetime that we recognize as gravity. A
gravitational field therefore consists of the curvilinear strain of spacetime, stress-
induced by large aggregates of mass and energy, upon which individual particles of
mass and energy are constrained to follow. Such spacetime is elastic in the sense
that it becomes distorted from rectilinearity by a transiting celestial body as the
body moves through it, but returns to its general undistorted configuration after the
body moves on.

Some authors would say that it is not space that distorts due to the presence of
mass/energy, but time. In fact, in general relativity space and time are not
considered as separate properties, but rather interchangeable components of a 4-
dimensional spacetime. This is a topic that we could spend volumes on, but it
suffices to point out that time is a means of accounting for changes in the
configuration of particles or bodies of mass and energy observed to be in space. It is
my opinion that time is simply a measure of distortions, changes or motion in or of
space. If there were no motion or other change in space, there would be no time. If
time is therefore a comparison of two different rates of change in space, the most
fundamental of such changes in terms of its scope is the expansion rate of the
universe. This appears to be exponential, due to the perceived acceleration of
universal expansion. By comparison the speed of light as a calibrator of time is
important but of secondary primacy, since it is a measure of the rate of change of
position of electromagnetic waves occurring in an expanding universe of apparently
finite age, and therefore would appear to be conditioned by any changing stress and
density of that expansion, perhaps invariant over time, perhaps not. If time itself
expands linearly along with each of three spatial dimensions due to cosmic
expansion, then the speed of light, ¢, will be invariant by definition. However, this
does not speak to whether all the processes that occur now in one second, would
have occurred 13 billion years ago in one second. Perhaps some would, perhaps
some wouldn’t.

Our interest here is not primarily with time, however, but stress within the context
of Simple Harmonic Motion and Uniform Circular Motion. We can envision an
instance of static stress, such as a loaded beam, in which the stress is not a function
of time, but discussions of SHM necessarily involve time or at least frequency. We
want to return to our discussion of PS3, 3 dimensional phase space and the phase
sphere, and examine how it might relate to an oscillation of stress and surface force
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without the need of a body force, either as an initiating factor or an ongoing
component of SHM.

We will start by imaging a single point in an inertially dense spacetime. The time
component [ am referring to in this “spacetime” is not some “unseen” dimension, but
rather the same 3 dimensional space that we saw a moment ago, all of it, however
changed by whatever has transpired within it, including by an ongoing expansion.
What [ mean by an “inertially dense” spacetime is a three dimensional modeling
space, a virtual 3-D blackboard so to speak, that is everywhere inert, that is it will
not change unless we, or other things within it, including expansion, do something
to make it change. Such change, once engendered, can be represented by an
additional, fourth dimension where we keep track of the changes. We can call that
dimension a record or a history of change or we can call it time, but it does not exist
“out there” in some other realm of multitudinous, corresponding 3-D spaces. That
fourth dimension is all in our head, but that’s alright, since so is the 3-D blackboard.
Once we put a point in spacetime, it stays there unless and until we erase it. Oh, and
this spacetime is the same thing as the one all around us that we call the universe.

This single point is so far out in extra galactic space that there is no other body, no
point of light visible to us since we have no Hubble space telescope with us. Even
our bodies are invisible. Just our minds and the single point that we can see. We
want so see what happens to this point if we allow a condition of isotropic
expansion of the space around it. The entire region around the point is moving away
from it, which is another instance of inertia. There are after all two types of inertia,
position inertia, g, in which a body at rest at some position stays at that position vis-
a-vis our position, and momentum inertia, p, in which a body in motion along some
trajectory stays in motion along that trajectory vis-a-vis our trajectory or position.
Simple harmonic motion is a process that relates the ordered interplay of these two
types of inertia so that we have the emergence of a concept of frequency, w, and its
inverted notion, time, ¢, as in how many times does the SHM occur while something
else is occurring.

To my knowledge, inertia is not generally characterized as being of two types such
as this, though this is consistent with Newton’s first law. We can always find a
trajectory and velocity parallel to a moving body that will put us in its rest frame, a
rest frame that would otherwise be a moving frame to us. Rest inertia in this sense is
always relative to a co-moving frame of reference of other bodies, but this does not
preclude a rest frame defined by isotropic red-shift in an expanding cosmos.

It should be remembered that the rate of expansion, as given by the Hubble rate, Ho,
at approximately 73 kilometers per megaparsec per second, is actually quite small.
This indicates the universe is expanding, straining, at approximately 2.37... x 10-18
meters per meter per second, which is approximately 88.6 times smaller than the
reduce Compton wavelength of a neutron, A, , a virtually undetectable length on

the human scale. The meter of course does not represent a natural length scale. If
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this strain, which as a ratio of relative length change per time is not length scale
dependent, is figured with respect to A, the length augmentation per second from

expansion relative to that scale is 4.97... x 10-3* meter per 4., per second. This is

approximately 30.78 times the generally accepted, theoretical smallest length scale
of 1.61... x 103> meters, the Planck length. But the second does not represent a
natural time scale either. Assuming the speed of light in a vacuum to be invariant,
the time taken for light to transit a distance equivalent to A, is the inverse of the

angular frequency, obtained as

A
te, = % =w,', =7.00..x10 seconds . (3.3)

This indicates that the expansion strain rate with respect to a neutron scale of
length and time, t¢», is the dimensionless strain number per time using a theoretical
neutron radian, 6,, as the time scale,

Hyw;' =1.65..x107 /1., (3.4)
The strain distortion length per meter at this time scale is
Ao Hyw," =348..x10™° meter/6, (3.5)

(3.4) is, once again, 30.78 times the theoretical smallest time scale, the Planck time
at 5.39... x10-*4 seconds. This ratio of times and lengths will be examined in the
Verification section. However, (3.5) is 2.15... x 10-23 smaller than the Planck length.
No experimental device currently available or to this writer’s knowledge, even
conceivable can penetrate to the Planck scale, let alone this much smaller scale.

Nuclear and other subatomic particle interactions, presumably occurring at or near
the speed of light, operate on a scale that dwarfs this expansion rate. The length of
time it would take light, whose velocity is supposed to be scale invariant, to transit
the strain distance per meter is 7.90... x 10-27 seconds, during which time the
expansion strain would be a mere 1.87... x 10-44 meters per meter, nine orders of
magnitude less than the Planck length. The length of time it would take light to
transit this distance is approximately 6.24... x10->3 seconds, again nine orders of
magnitude less than the Planck time. Thus any random variation in position or
conjugate momentum in the phase space of a nucleon dwarfs in scale any achievable
determination of an absolute position in space and time.

Still, we would like to find a way to gauge the expansion locally, if indirectly. We
have our position-inertia as discussed at the location of our point, and we can
assume, instead of a second point, a translucent, momentum-inertial sphere around
the central initial point at a scalable distance that we call ro, moving out at ayet to be
determined expansion rate. It is important that while we think of the way this and
additional spheres will respond to changes in themselves and their positions,
between each other and in their environment, we must understand that essentially
they are not “things” at all. They simply represent loci of dynamic stress equilibrium,
strain movements and their relationships in a small section of a single spacetime
continuum in response to its overall expansion.
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Our position-inertia is what we normally call mass, m, while our momentum-inertia
is our old friend from phase space, conjugate momentum, p, which at ro is po. In
terms of a position in spacetime, the mass is a measure of the inertial constant, 1,
times the square root of the Gaussian curvature of the phase sphere PS3 which we
will designate as K, which happens to also be the angular wave number, x;

represented by the sphere or
I 1
k=K = \/:2 =— (3.6)
h T

Thus the unit mass, mo, is

m, =10K, (3.7)
the linear inertial density over the distance ry is
nK
Ay =—L=nk, (3.8)
To

The time rate of change in the unit momentum at the spherical shell per unit of
surface area, is

Py _ Ty _

A, A, Joo (3.9)
As shown, this is equal to the stress at the surface of the sphere. It is important that
we understand what this means. If we are standing at a point in space at which
every point around us is moving away from us at some finite speed, with the
understanding that the same is happening for every other point, we have to ask
ourselves what determines this speed. If the whole of the space around us were to
be infinitely inert, it would mean that it could not move at all and there would be no
expansion. If the whole of that space had zero inertia, it would mean that whatever
and whenever some agency put it into motion, the expansion would be
instantaneous. The fact that it has a finite speed that appears to be increasing over
time, indicates that such space has an inertial component. Like a massive flywheel
that requires decreasing energy input per radian of motion over time in order to
accelerate, such a space, due to its inertial property would be expected to accelerate
its expansion over time. With expanding spacetime such inertial acceleration
constitutes a stress force field.

For an isotropic force field moving out from a central point which has no
dimensional component, that is a radius of zero and a vanishing surface area, the
stress at the point is infinite. This is physically untenable, so instead of a point we
are compelled to assume that some geometric domain intervenes between the
isotropic outward expansion force and the center point of the sphere. With
expansion we should expect the generation of a spherical loci at radius, ro, at which
the expansion tension stress equals the reactive stress, establishing the elastic
potential energy density of the interior of the sphere.

Once equalized, given only a tension component of the stress, we would expect a

dilatation or increase in ro related to the expansion rate. As discussed in the Aside
#2 on stress and strain analysis, however, there are other components of stress
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including lateral compression, shear and torsion to consider. The net effect of this
would be the production of torsional, i.e. limited rotational oscillation and the
creation of a central angular acceleration of the sphere that works counter to any
dilatation at its surface. Since the spherical discreteness we are examining is a locus
of stress equilibrium in an otherwise continuous manifold, and not a discrete body
in isolation in a true vacuum, we would not expect full rotation of the sphere, which
would create unsustainable axial strain and stress at the poles of the rotation.
Rather we would expect axial oscillation in keeping with our model of PS3. Once
initiated, with increasing expansion stress, the increasing rotational strains are
anticipated to accelerate tangentially and therefore centrally, resulting in a net
differential central force radiating isotropically and responsible ultimately for
coupling with a gravitational field.

If we let the sphere expand, we will once again have no way to gauge the expansion
around it, and if we keep it fixed, we are in the same pickle. (At this point we have no
measuring rods and no clocks.) We think about it for a few minutes and realize
isotropic expansion implies expansion about all points, so that if we put some
additional, similar spheres around the single one and keep them all sized at ry,
allowing them all to touch, we might eventually be able to notice some variation in
their motion with expansion. We can get twelve such spheres around the initial
sphere, as in Photo 1, and find it interesting that the only way we can get them all in
place is to create a lattice of four axes about the first sphere. We notice that each
axis is normal to an arrangement of the central sphere with six spheres forming a
hexagonal disk around it, and that each such arrangement has three sets of two
opposing spheres in common with three other disks, making a system of 4
intersecting disks around a central sphere of equal size.

Cuboctahedral Lattice Tetrahedral Aperture Oc:ahedral Aperture
Photo 1 Photo 2 Photo 3

B

We find that each and every sphere on the periphery of this arrangement has two
other spheres in direct contact with it in the form of an equilateral triangle and in
fact each sphere belongs to two such groups on opposite sides. We can transpose
any three by rolling them simultaneously about the six in which they are nested, by
a turn of 1/3 7z This rearranges the axes, bending three of them at the center around
the first and affects the symmetry, but in the end returns the thirteen spheres to the
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same tight density they had originally. Turning them back restores the 4-axial
symmetry.

Now, if we allow the space around them to expand isotropically, after a period of
time they each end up a distance aro apart from the central sphere and from each in
the adjacent pair on either side on the periphery. If we draw lines connecting the
centers of each sphere, we notice the emergence of some recognizable geometry.
The lines joining the twelve, periphery spheres form a cuboctahedron, which is the
polyhedron formed by drawing a line between the midpoints of the 4 edges of each
face of a cube. This creates a diamond on the face of each of the 6 cubic faces and an
equilateral triangle where each of the 8 cubic vertices had been. This means that the
twelve spheres in their pre-expansion position form a similar rectilinear grid, a cube
with a sphere centered at each of its edge midpoints, for which the previously
mentioned 4 axes are the cubic diagonals. The 8 vertices of this cube are positioned
in the regions outside the three spheres about each corner and the centers of each
sphere coincide with one of the midpoints of the cubic edges. The cubic edge

measures 2x/§r0 in this initial configuration.

What we have is the superposition core of an interlaced 3-axis rectilinear or
hexahedral lattice centered through the cubic faces and a 4-axis alternating double
tetrahedral plus octahedral lattice centered along the diagonals. The first lattice
actually embeds a 3-axis octahedral lattice through the center of each sphere and a
second 3-axis stretched rectangular lattice with a /4 twist between adjacent axes
through the periphery spherical centers and around the central sphere. The second
lattice embodies the obvious local tetrahedral lattice along the diagonals. I have
called it local, because if this close packing of spheres is carried out indefinitely,
each sphere will have tetrahedral packing in each direction at each of its diagonals,
but the diagonal and therefore lattice axis will run through an octahedral cell before
entering another tetrahedral cell and then another sphere.

Looking at Photos 2 and 3, we do some quick checks and find that the cosine of each
angle of the equilateral triangles of 7/3 is %2 and the sine is @ for an area of ﬁroz
spanned by the three spherical centers, while the spherical cross-sectional area is

%roz ; a difference for the tetrahedral “free space” aperture of 0.16125...7; . The

computation for the diamond on the six cubic faces is a bit simpler since each side is
2ro for an area of 47, minus the spherical cross section of 77, for a difference for

the octahedral “free space” aperture of 0.85840 ... r; . This means that the

octahedral aperture is 5.32330... times larger than that of the tetrahedral aperture.
It also means that the inertial density of the spheres is less about the customary
cubic surface axes than about the diagonal axes, where we include only the area
within the corresponding cuboctahedral surface, by a factor of

7 )7 V3 ges0n.. (3.10)

4/ 3 2
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If we define the density as the ratio of the cross-sectional areas of the adjacent
spheres to the corresponding aperture we have

4n / M 025046... (3.11)
0.16125..

0.85840...

Cuboctahedral Lattice showing  Lattice extension along 3-axes Lattice extension along 4 axes
both hexahedral and octahedral  surfaces develops octahedron diagonals develops cube with
components with stability of vertices and instability at vertices and
density of surfaces porous surfaces
Photo 4 Photo 5 Photo 6

Cuboctahedral Lattice
Photo 4 shows additional elements to the cuboctahedron suggestive of an extended
lattice. These configurations are made with small magnetic spheres, which have
magnetic dipoles analogous to a neutron or proton magnetic moment. Photo 5
shows the stability of extension along the hexahedral 3-axes and density of the
octahedral, diagonal 4-axes. Photo 6 shows an extension along the 4-axes with
instability evident at the cubic vertices and a much greater porosity of the cubic
surfaces. The internal structure of both Photo 5 and Photo 6, as in an indefinitely
extended lattice, is the same cuboctahedral lattice. It is only at the boundaries,
principally of the hexahedral component and in particular of the vertices, that the
instabilities and therefore the differences emerge.

It is worth noting in the context of this lattice geometry that a cuboctahedral edge
length is equal to the diameter of the central sphere, so that it is also equal to the
radius of a sphere, R, circumscribed through the vertices. The distance from the

center of the central sphere to the midpoint of the cuboctahedral edges is 3R and
from that center to the cubic faces is \/ZR . The first of these coefficients is the sine

of the angles € and g mentioned earlier in connection with Figure 26 and is
significant to quantum mechanics as the magnitude, S, of the spin angular

momentum of all fermions, for which the quantum spin number is s=7 and Sis

S=s(s+ 1= (1 +1)a="%n (3.12)
where 7 has been previously discussed as an invariant action. In terms of our
discussion of PS3 and SHM then, if R = qo,

S=V4S =V4nc . (3.13)
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The value \/E is the coefficient of qo, po, 70, and co, at the moments +/-E and +/-M,

when the action and power each reach a maximum % in PSz and an invariant %2 each
as they rotate in PSs.

No other Platonic or Archimedean polyhedral lattice embodies these significant,
fundamental geometric coefficients. The takeaway from this is that isotropic
expansion performed globally results in the emergence of the above-described
lattice without any exogenous constraints. Of interest is the fact that this analysis
suggests that the principal axes affected by expansion are the 4 axes of the
diagonals. Assuming an inertial spacetime, this means that the principal tension
axes in the locale under investigation, and thus on the surface of the central sphere,
are these four diagonals and not the three cubic face axes. Thus the shear and
shearing rotational /torsion stresses that would be expected by elastic stress-strain
analysis to accompany an expansion tension are then about these axes and in the
plane of each of the eight triple spheres delineating the cubic vertices. The inertia is
more concentrated about these axes in response to such stress. These are free to
rotate about the diagonals with less inertial resistance from other spherical domains
than are the four spheres defining each cubic face about the three cubic face axes.

It is of interest that there is a two-dimensional correspondence to this three
dimensional emergent phenomena. Rayleigh-Benard convection is the designation
for the formation of a hexagonal lattice pattern of cells in a shallow layer of fluid
subjected to gravity and a temperature, i.e. energy, gradient from below, in
conjunction with the viscosity and thermal properties of the fluid. In the case of our
current thought experiment, gravity and the properties of the fluid are replaced by
the inertial properties of spacetime and the energy gradient is due to its isotropic
expansion. The resulting planar convection cells are replaced by the stress/strain
oscillations of spacetime. The form each emergent phenomenon takes is due to
geometric constraint.

An essential aspect of this inertial spacetime is the concept of continuity, that is that
the points right next to any given point cannot be transposed. While we can see that
a lattice can emerge from stretching such continuity, it does not follow that such
continuity can emerge from a collection of points not inherently so constrained, i.e.
points free to move in the manner of a random walk vis-a-vis other points. Assuming
an inertial, and within certain limits, elastic continuum, we would expect that with
continued expansion and the geometric constraints of PS3 and the above emergent
lattice, that on some scale determined by the inertial density of the continuum,
instances of torsion would occur.

In Figure 27, we have an example of such torsion operating in two orthogonal
directions. There are two sets of co-ordinates shown with capital letters for
reference purposes in keeping with the prior development of PS3, one for the
diagonal and one for the surface axes. The lower case co-ordinates indicate points in
the field that are moved by the stress/strain relationship. In graphic #1, we have
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defined a square with edges of V2 in keeping with the cuboctahedral description
and our prior development of the moments E and M in PS; and PSs. The torsional
stress potential of #1 results with expansion in the defined strain of #2 shown by
the co-ordinate pairs, followed by a second torsion strain in #3, which sets up a
recoil stress potential indicated by the axial vector ¢ in #4. Upon recoil, the potential
¢ becomes the active axial vector ¢, and initiates the angular momentum vector @in
#5. This last step gives the Spin Diagram seen in Figure 26, which is advanced about
0 by half a rotation from #5.
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3. Second, orthogonal torsion stess 4. Creates orthogonal torsion strain and 5. Recoil of torsion stress and

PS2 oscillation/rotation potential, ¢ strain results in generation of
induction (gold) and capacitive
(red) moments, PS2
oscillation/rotation , ¢, and
spin angular momentum, .

Spin generation in PS3

Figure 27 - Initial Strain State

In #5, the various y,z strains are colored to reflect their functional states at the point
in time at which they constitute the +/- E and +/- M moments as shown. Figure 28
shows a continuation of the rotation of @ over one cycle at %2 7 stages or phases. As
we will see, this is the resonant state of PS3 which is recognized as the neutron. Each
of the four phases consists of a %2 wrotation about ¢ followed by a %2 wrotation
about @ according to the axial vectors shown. Each of these rotational sequences is
equivalent to a right hand twist at each of the upper diagonals as shown. Such a
sequence of twists, as well as the corresponding sequence of double rotations,
rotates the permanently displaced +/- x faces of the cube about the X axis, while the
+/-y and the +/-z faces alternately oscillate about their initial positions along axes Z
and Y.
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+Y Reference co-ordinates
(*) indicates distal vertex.
Diagonal axes Surface axes +Y

% 7 Twist @ -Z/+Z & 7 Twist @ +W/-W % 7 Twist @ -Y/+Y § 7 Twist @ +X/-X

Combination of PS2 rotation, ¢, and PS$3 spin, 6, each over % 7 is equivalent to a twist at diagonal axes of % 7 as shown. The
result is an oscillation of the torsion stress and strains, here shown with representations for each phase. The capacitive, C, and
inductive, L, torques are found by crossing the two equilibrium or unstrained positions into the capacitive moments for the
capacitive torque and the two inductive moments into their equilibrium or unstrained positions for the inductive torque. This
particular sequence represents the resonant condition which is recognized in quantum phenomenology as the neutron. The
quarks of the standard theory are the nodes/antinodes of the oscillation.

Resonant spin state, the neutron

Figure 28 - Resonant Strain State

The twisting motion of the triplets about the diagonals constitutes an oscillation of
the tetra-octahedral lattice and the principle stress/strain relationship in the
continuum responsible for generating the property of spin. Why it is this and not the
hexahedral lattice that is primary can be found in the notion of the conservation of
angular momentum. Such conservation directs the energy flow in a torsional stress
into whatever structure incorporates the smallest moment of inertia. The moment
of inertia, I, of the cuboctahedron of Photo 1 is less about the diagonal axis through
the tetrahedral aperture (TA) as shown in Photo 2 than about the surface axis
through the octahedral aperture (0OA) in Photo 3. Assuming uniform density of the
spheres, the sum of the distance from each spherical center to the associated axis
gives a measure of I as

Iy =6(1)+2(3())=6(1+4) = 9.46410... (3.14)
where 1 is the distance from the central sphere to each of the 6 adjacent spheres in
the central plane and  is the distance from each of the triple spheres about the
pair of TAs to the corresponding axis, and

Ty =4(1)+2(4(%)) = 4(1+2) = 9.65685... (3.15)
where 1 is the distance from the central sphere to each of the 4 adjacent spheres in
the central plane and 5 is the distance from each of the quadruple spheres about
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the pair of OAs to the corresponding axis. This gives a slight advantage to torsional
oscillation about the diagonals.

As a description of this oscillation, we can rotate diagonal -Z with its two pairs of
triplets by a rotation of 2/3 & ccw. This moves the cubic face +y, onto which we can
draw an arrow pointing up, to the top with a rotation ccw of %2 7 of the arrow to
point left. We repeat the same rotation diagonal +W, which moves +y back to its
original position, but now rotated ccw 7z from its original orientation with the arrow
pointing down. At diagonal -Y we repeat the procedure, which rotates +y to the
bottom of the cube, presumably in the same orientation as when it was on top. (You
can peek if you want and make sure, but the arrow does point left.) Finally we focus
on diagonal +X and rotate the axis as before. +y returns to its original position with
the arrow pointing up. No co-ordinates have been harmed in the making of this
movie. No entanglement of an arbitrary x, y and z, so that we have to untangle them
every even number of rotations. The net effect is a sustained angular momentum of
the system about the top face. An oscillation over 4 axes creates a rotation in three
without an actual complete bodily rotation of the center sphere. In fact, when we
analyze its motion, it very accurately embodies the motion of the PS; disk in the PS3
sphere. In short, the expansion of an inertially dense spacetime overtime naturally
and necessarily leads to the emergence of a discrete unit, i.e. a quantum, oscillation
with angular momentum of %2 &. It is such oscillation that is described by PSs.

There is a more work needed to nail this down. If we cross the action/power
moments of PS3 with respect to their positions prior to displacement on the
equilibrium circle C., into those positions for the +/-M and from those positions into
the moments for +/-E, we obtain two axial vectors or torques, one for the two
capacitive moments, Cg, and one for the two inductive moments, Lu. The angles for
this crossing, u for the inductive and & for the capacitive moments, are /3.

These torques necessarily rotate synchronically with the moments in ¢ with the
inductive torque leading the capacitive torque by %2 7z, both inclined away from the
angular momentum vector. These apply a maximum torque to each of the 8 axes of
the rotating PS; disk, mitigating the recoil of 6to align with ¢, and advancing the
rotation of the restorative force of SHM. They also generate a magnetic moment
antiparallel to the angular momentum or spin vector. Thus

[(-Mxp )+ (+Mxp,, ) |=L, (3.16)
[(—70x=gy)+(+7, x+q,) Jsinpr = 2(i L 7,q, ) (3.17)
|:(p_% x+E)+(p,., x—E)} =C, (3.18)
[(=qy x+7,)+(+g, x—7,) Jsine =2(=i L 7,4, ) (3.19)
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While the two components in each torque can be represented as one axial vector, in
terms of the magnitude of the torque, they operate separately on each half of the
rotations ¢ and 6. These are shown in Figure 29 for the resonant state, the neutron.

The upper figure shows the four figure eight paths of points +/- y, +/-z on the PS;
disk prior to the torsional strain. PSz, which is centered on the axial vector ¢, is
positioned so that the physical point +z is displaced to the point +g of PS3 in Figure
23, one of the two functional points, +/-V, of maximum potential energy for +z and
all other points on the circle of PSz . This is designated as the time 9(%), where the

time 0(0)is represented by the position of the axial vector ¢ parallel to the +Y axis.

The moments +/-E and +/-M, represented by the black “X”, are located at time 9(%),

and -M.; indicates the position of +z when it is at the moment of maximum power
on the discharge or induction leg of its cycle traveling in the -X direction. The angles
€ and u are shown. It is important to note that the selection of the points +/-z and
+/-y are arbitrary and that the moments E and M exist for all points on the circle Csp
that includes these four points.

The lower figure shows the oscillation at time 0(§+ %) when +z has reached -M and

the other points +y, -z, and -y have reached the other moments shown. The two
torques generated by these moments are shown at L, and C.. Most significantly, the
effects of these torques on what we will call the nodes and antinodes of ¢ and 8 are
shown by the small red, & and gold, x4, vectors along the @ rotational path. The inset
on the lower left of the figure enlarges these and also shows the condition of ¢ at
maximum potential energy point +/- V. All are as viewing the sphere from the
exterior toward its center. Note that at the positions of +/-V and +/-W, €and u are
orthogonal and that their dot product therefore vanishes and their cross product is
maximum. At Ko and K,, they are parallel, the cross product vanishes and the dot
product is maximum. We will see the effect of this on spin and charge in a few
minutes.

Overtime, as the continuum continues to expand, its mechanical impedance
decreases and the inductive torque advances and drops generally antiparallel to the
angular momentum vector, reversing the direction of the magnetic moment vector
to align with the spin and transmitting a portion of its power and energy as the
electron, decreasing its frequency slightly in the process. In the event of a retarding
of the inductive torque, which generally will not occur in the context of expansion,
the capacitive torque drops generally anti-parallel to the spin vector, creating the
antiproton and transmitting the positron.
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Figure 29 - Spin Diagram 2, Neutron
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Figure 30 indicates the strain relationships associated with beta-decay and the
emission of the electron. The drop in mechanical impedance and inertial density
arising from spacetime expansion effectively pulls at the nodes of rotation ¢,
increasing the strain. These nodes are designated by the W points on the lower
diagram of Figure 29. As we will see shortly, this is particularly significant at the W_,
node. Over time, this advances the ¢ axial vector in @ without a corresponding
rotation of ¢ itself. This is seen in Figure 30 as indicated at step 2. Recoil of the
strain as indicated by the four point pairs results in a rotation reversal of ¢ and a flip
in the spin vector 6. A portion of the energy of PS3 continues on as the emitted
electron state.

¢ N

1. 27 Twist@ -Z/+Z 2.

Momentum carries ¢ another$ 7 ccw
for emitted electron @ L before
strain recoil reasserts ¢ rotation and
flips spin as shown below.

1 7 PS3 spin advance @ @ resultsin 3.
rotation reversal @ ¢ and drop of
torque L to far vertex as shown

due to strain advance represented

Ongoing expansion results in a decrease in spacetime
density and mechanical impedance which induces a

transmission of a portion of the oscillation energy and
power as a subsidiary PS3.

Magnetic moment is parallel/antiparallel to
the spin vector, always antiparallel to the

by (v,2) - (-y,~z) , resulting in
beta-decay.

Strain recoil for main primary
oscillation as indicated by Torque L

6,
i

above rotates 7 cw @ ¢ for all 4
moments resulting in spin flip as
shown.

general direction of the induction torque L.

Electron

Proton i

Beta-Decay, Proton-Electron o,
Figure 30 - Strain States of ordinary Matter at Beta-Decay

(*) indicates distal vertex.

Let’s do a quick review of what is occurring in this quantum oscillation. The energy
of cosmic expansion results in an emergent oscillation of torsion stress and strain on
a very small scale according to well-defined geometric constraints. The physical
strain displacement and recoil paths incorporate well-defined functional points of
maximum concentration of power and action, which act as torques rotating in
synchronous manner with and conditioning the path nodes and antinodes, which we
will refer to collectively as the nodes. The nature of that conditioning can be
understood through analysis of the vector operations of €and u at the nodes. The
results of this analysis can be read in the spin and charge tables, Figures 38-39.
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We start in all cases by calculating the product of the torques L, and C, and the PS3
radials at the points shown to establish the magnitude of the vectors €and p at each
of those points. As the torques lie along the diagonals of a cuboctahedron and the
nodal points lie along its surface axes, the angle in all cases is 0.9553 ... with a sine

of \/% . As a result, the magnitude of €and u in all cases is the magnitude of the
torques for each half of the cycle, @, times the sine or . The angle between £ and

U and the tangent vectors for each of the rotations 8 and ¢ is in all cases § with a
sine and cosine of = while the angle between £ and u at the points +/-V and +/-W is

an invariant ¥ and at the points Ko and K is either 0 or 7. As stated, this means their
dot product vanishes at V. and W and the cross product vanishes at K.

The maximum angular momentum of PS3 is determined by the points K where the
kinetic energy is greatest. As seen in the charge table, the various dot products in all
cases equal +/- %2 as a coefficient of the angular momentum. This is in keeping with
the observed phenomena that all fermions have 4 spin angular momentum. In the
case of the neutron, all the values of the dot products are positive, indicating a
potential for the interacting torques and rotational dynamics to augment each other.
It is thus an unstable condition, even though it represents a resonant state of PSs. By
analogy, a bridge that begins to oscillate at resonant frequency is inherently
unstable.

With respect to the various cross products in the table, the radial sense designation
used is a filled dot for a centripetally directed vector and a hollow dot for a counter-
centripetal vector product. It bears mentioning that while £ and u are equal at the
given nodes, by their natures the differentials of the inductive or kinetic vector, 4,
are always increasing and those of the capacitive or potential vector, ¢ are always
decreasing. For this reason, in the charge tables y is always crossed into £ with the
direction of the vector product given by the right hand rule.

Column 7 gives the charge at each node of the ¢ rotation , W.xand W_y, (+/-W).
Notice that while these two points are the nodes of ¢, they are circulating on the
or Csp circle, as indicated by the row headings. In the case of the neutron, the ux
and the & x are antiparallel and cancel, indicating a neutral charge for the neutron
PSs. Note also that the radial sense for yx e at Wy is centrifugal, indicating a

potential for emission of energy from this node, while that at W. is centripetal,
indicating a corresponding potential for retention of energy at this node.

Figure 30 gives a representation of the strain events at the point of beta decay for
ordinary matter. Figure 31 gives the four phases of the rotational cycles of the
electron and proton, with the relative positions of the C and L torques shown. Note
that all the cubic representations of the strain states of PS3 are out of phase from the
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corresponding Spin Diagrams, by 4 as each shows from Figure 27 #1, initial,

undisplaced positions at the vertices of the square as the points strained to the
(gold/red) power/action moments of the Strain States. The Spin Diagrams indicate
positions from the normal vectors of an XYZ co-ordinate system displaced to those
same moments.

6o
1

= § bW § % %
7 Twist @ -Y/+Y 7 Twist @ +X/-X 7 Twist @ -Z/+Z 7 Twist @ +W/-W
Electron e i R ekl

Voo

§ 7 Twist @ +Z/-Z & 7 Twist @ -X/+X 0 % 7 Twist @ +Y/-Y
3

Proton

Proton & Electron Rotational Oscillation

Figure 31 - Inductive Strain States, Electron and Proton

The following Spin Diagrams for the proton and electron show the dynamics of
Figure 31 in greater detail at a given moment in time, with the same nodal detail for
the torques and their local vectors ( and € as seen with the neutron in Figure 29.
With respect to the charge table for ordinary matter, for the proton, the dot
products of these vectors are of opposite sense at each of the nodal points with
respect to ¢ and 6, and are negative with respect to their common product,
indicating the antiparallel nature of their effect. The spin magnitude remains %2 but
the stability of the proton over the neutron is indicated by the opposite senses for y
and &

With respect to the cross products and charge, the condition at W. is centrifugal for
both px and €x asitis for uxe with the net result of a charge of +1. At W, the

charge is similarly +1, but is is centripetally directed.
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Figure 32 - Spin Diagram 3, Proton
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In the case of Figure 33 for the electron, while the dot products of ¢ and € remain

negative due to the antiparallel nature of the vectors, the dot products of u- are all

positive due to the inductive nature of the proton-electron strain states; the
inductive torque is generally parallel to the direction of motion of all the nodal
points of ¢ and @ in the electron. The €- products are each antiparallel to that
motion and therefore negative.

With respect to the cross products, as with the proton, at the K points g xe

vanishes and their individual products with ¢ and 8 are antiparallel and therefore
cancel. At W the cross products are centripetal for both px and £ x giving a net

charge of 1, but antiparallel to u x € for a negative charge as shown.

1. 3z PS2rotation advance @ ¢ with
spin pause results in a drop of
torque C as shown by (y,z) - (-y,-z),
and emission of energy as the
positron.

2. Momentum of rotation of the
emitted strain advances all 4 \A
moments before the strain recoil
flips the red E moments about the
gold M moment axis and establishes
the new ¢ rotation, resulting in spin
flip as shown.

Each magnetic moment is parallel/antiparallel v

to the spin vector, always antiparallel to the
general direction of the induction torque L.

Positron L

b,

Beta-Decay, AntiProton-Positron
Figure 34 - Strain States of Anti Matter at Beta-Decay

Figure 34 is a representation of the strain states at the point of beta decay for anti
matter. In this case, as can be seen there is an advance of the ¢ rotational strain
without a corresponding advance of 8, which emits the positron with a spin

reversal. This is equivalent to a retardation in spin and indicates a general capacitive
state, which is why it is rare in the context of an inductive, expansionary state of the
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cosmos. Figure 35 represents the strain states for the antiproton and positron and
shows the symmetry of the relationship with ordinary matter.

0.

6

N A N
Antiproton § 7 Twist @ -Z/+Z § 7 Twist @ +W/-W § 7 Twist @ -Y/+Y % 7 Twist @ +X/-X

§ 7 Twist @ -X/+X 7 Twist @ +Y/-Y % 7 Twist @ -W/+W § 7 Twist @ +Z/-Z
Positron 9 . % i

AntiProton & Positron Rotational Oscillation
Figure 35 - Capacitive Strain States, Anti Proton and Positron

The corresponding Spin Diagrams for the antiproton and positron follow in Figure
36 and 37. With respect to the charge tables for antimatter, the neutron is said to be
its own antiparticle, but it is simply the same resonant particle that undergoes a
capacitive strain advance with the resulting different transformation of the torques
C and L and opposite charge at the point of positron emission.

With respect to the dot products of ¢ and &, the vectors remain antiparallel so the
sense of their mutual products at K remains negative in both particles. For the dot
products with ¢ and 6, the senses are all opposite those of the proton and electron.
This means for the positron that y is antiparallel and € is parallel to ¢ and 8 at all
nodal points, indicating a capacitive strain, phase state.

With respect to the cross products, the condition at W is centrifugal for both u x
and € X , indicating the point of transmission, but for ux € is centripetal and

antiparallel for a charge of -1. For the positron, at W., all are centripetal for a charge
of +1.
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Figure 36 - Spin Diagram 5, the AntiProton
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Figure 40 - Charge and Spin Table for Ordinary Matter for C & L
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Figure 41 - Charge and Spin Table for Anti Matter for C & L
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Figures 40 and 41 give the same information as Figures 38 and 39 for the dot and
cross products of ¢ and & however using a value of 1 for the torques C and L instead

of @ . This is done to give an indication of the tie-in of this analysis with the current

quark phenomenology of the standard model. [ will leave it to others to work out the
details. The correct value of C and L is worked back into the analysis in Column 7 of
these tables to arrive at the correct charge values as indicated at the Column
heading.

Figure 42 gives a comparison of the strain cycle states for each of the states
delineated above. It shows the strain sequence over 6(o,1,2,3) for the position (y, z) as
taken from the Figures 28, 31 & 35. For the neutron, proton, and antiproton, the
same sequence occurs for the three remaining positions, (y,-z), (-y,-z), and (-y, z)
with appropriate transposition of the sequence numbers, rotating clockwise around
the axial vector 0 as viewed from the top of the cube. The strain is therefore
rotationally symmetric for each of the four strains. In the case of the electron and
positron states, the (y, z) and the (-y,-z, not shown) strains are half-rotationally
symmetric about @, as are the (y,-z) and the (-y, z, not shown) strains. This
asymmetry is an indication of two properties of these states; a significant elongation
from a generally spherical to a pronounced prolate form of the strain along the x or

Phase Advance of ¢ (PS2) 0 Phase Advance of 8 (PS3)
with no Advance of @ (PS3) with no Advance of ¢ (PS2)
equals Retardation of @ and T equals Retardation of ¢ and
0 a net Capacitance state. 0 a net Induction state.
T e ~a
1
L /; vz
Al 3 |
Y.z \l/ o y \ ¢
@6=0
A
) Neutron
@6=0 C Resonant state
AntiProton

6@  Positron Y6 Electron
Strain Path Integrals and Basic Particle Symmetries, ¢ Orientation

Path integrals of y,z and for electron/positron y, -z strains are shown, with color indicating the increasing % = phase for each component,
Capacitive (red) and Inductive (gold). Action/power moment sequence is numbered. C & L torques are for & = 0 and rotate with ¢ about 6.

Figure 42 - Comparison of Strain States

59



generally (y, z)-(-y,-z) axis, and a propensity for @ to flip about the generally (y, -z)-
(-y, z) and X axis plane. Such a flip transmits a traveling torsion wave that is
recognized in the standard phenomenology as a photon or boson, a force carrier.

In Figure 43, the same particles are shown so that all the @ vectors are parallel. This
gives a better view of the symmetry between ordinary and anti matter, the first of
which is advanced in the rotation of 8 and the second of which is retarded. Notice
that the same advanced/retarded symmetry holds for the emitted states, the leptons
of the standard phenomenology, electron and positron. For the positron, two @ flips
are shown for the position (y, -z). One is an observational flip, which means a
snapshot view of its position shown in Figure 42 taken from the backside and
upside down and shows the same strain state as in Figure 42. The physical spin flip
shown represents an actual flip of the spin due to a recoil of the strain as shown.
Note the difference in the initial position of (y, -z) in the two depictions. A similar
condition applies to the electron as well. These physical flips indicate a reduction in
stress/strain of the state to that of the basic or ground energy state with the
emission of a photon.

Phase Advance of @ (PS3)
with no Advance of ¢ (PS2)

equals Retardation of ¢ and

Phase Advance of ¢ (PS2) 9
with no Advance of g (PS3) T

equals Retardation of @ and -
0 a net Capacitance state. 0 Aanetinduction'state. 9
i v X Yy t
@0=0 3
L /2.’ ' Y.z C
3
.z \l/ < < \ ¢ e
@6=0
A Neutron
¢@ 9=0 3 Resonant state

AntiProton C

Physical Spin Flip Co-ordinate/Observational
Spin Flip

Positron Electron

Strain Path Integrals and Basic Particle Symmetries, € Orientation

Path integrals of y,z and for electron/positron y, -z strains are shown, with color indicating the increasing % n phase for each component,
Capacitive (red) and Inductive (gold). Action/power moment sequence is numbered. C & L torques are for & = 0 and rotate with ¢ about 0.
The two images for y, -z for the positron show the difference between a physical and reference spin flip for either electron or positron.

Figure 43 - Comparison of Strain States with Parallel Spin
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The following photos are of toy models representing the strain phase and spin states
of the neutron, proton and antiproton based on the above analysis and diagrams.
The smaller red and gold (or yellow) nubs represent the E and M moments and their
relationship to the long brown ¢ axial vector along the rotating x axis. The longer
red and gold vectors represent the C and L torques all of which circulate about the
blue spin angular momentum vectors. The orange vectors parallel or antiparallel to
the spin vectors represent the effective magnetic moments of the quantum states.

PS3; Anti-Proton PS3 Neutron . PS3 Proton

Toy Models of 3-D Phase Space for the neutron, proton and anti-proton. The 2 capacitive moments
(small red vectors) and 2 inductive moments (small yellow vectors) are in the plane of the 2-D phase
space whose rotation is indicated by the brown axial vector representing the principal restorative
force of SHM. These moments in turn generate the capacitive (long red axial vector) and inductive
(long yellow axial vector) torques that prevent energy dispersion and generate spin angular
momentum (blue axial vectors). The magnetic dipole moments (orange vectors) are determined by
the inductive torque and roughly anti-parallel to it. The proton results from an advance of PS; about
the angular momentum and the resulting flip in the inductive torque. The anti-proton results from a
retardation of PS; about the angular momentum and the resulting flip of the capacitive torque.

Photo 7
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Neutron state at capacitive torque showing Neutron state at inductive torque showing
displacement of inductive moment behind displacement of capacitive moment behind

The small arrow to the right of the “n” shows direction of the PS; disk axis revolution in PSs. The
arrow beneath and pointed toward the red capacitive moment in the right photo shows the direction
of rotation of the PS; disk about its center. The top portion of the figure 8 path crossing at that point

shows the oscillatory path etched by that point of the disk on the PS3 spherical shell as the disk
rotates. The neutron state is a resonant state.
Photo 8 Photo 9

Proton state showing the advance of the Anti-proton state showing the retardation of the
capacitive and inductive moments and their capacitive and inductive moments and their
displacement paths displacement paths
Photo 10 Photo 11
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Verification

Our discussion on with Simple Harmonic Motion started with its representations in
classical phase space and sinusoidal functions, took an aside into some basic notions
of calculus and isotropic differential change, developed an extension of phase space
to three dimensions to incorporate potential and kinetic energy, took another aside
into the stress-strain analysis of three-dimensional materials and mediums and the
difference between body and surface forces, examined some properties of an
expanding spacetime fabric (STF), including the inevitable emergence of geometric
constraints due to the stress-strain relationship of inertial continuity, to finally
arrive at the statement that the basic particles of matter that we observe
everywhere about us necessarily arise in such inertially continuous spacetime in the
process of expansion as microscopic individual or quantum instances of SHM. This
may be reasonable, but if it is true it should be accurate. We should be able to
predict some of the readily observed properties of such matter and in a way that
current models cannot.

Specifically, as functions of an expanding spacetime we should be able to:

1) derive a gravitational quantum, predict Newton'’s gravitational constant and
his law of gravity, in a manner consistent with general relativity, and
2) derive a model of beta decay tied to the expansion, predict the neutron and

electron mass ratios, predict the expansion rate of the cosmos, account for the
missing mass of beta decay, and predict the value of elementary charge.

1) Quantum Gravity

Current attempts at a unification of theoretical physics rest in part on the
dimensional analysis of Newton’s gravitational constant, Gy, by Max Planck and its
assumed applicability at a theoretically smallest limiting scale, where we have
displacement, ro, mass, mo, and time, to, and 7o is a fundamental unit of a presumed
body force, the subscript naught again indicating a fundamental unit, i.e. equal to

one in some natural scale:
2

2 3
r r n n
G,="2(1,)="%| m,~2L |=— 4.1
N é( 0) m\ " | (4.1)

It bears emphasizing that if we are to anticipate a quantum theory of gravity, then
the function of Newton’s constant in the context of Newton’s gravitational law is to
produce the force between two massive bodies by converting their respective
masses and the distance of separation of their centers of mass to some fundamental
units of each property and multiplying this by a fundamental unit or quantum of
force as in the second term above.

Since ¢, the speed of light, and 7, Planck’s quantum of action, are assumed to be
invariant at any scale, their expression in terms of the units of some as yet
undefined natural length scale, ro, commensurate with 7 is

63



I 7
c==L t,=-,and
1, c
I " (4.2)
h=—"% m,=—
A cr,

Substituting these conclusions for time and mass back into(4.1), and assuming the

same natural units for the length scale, we have the following expression for Gy,

3 3 3
I’O C 2 C
=0 _Z 2" A 4.3
N motg ' o (4.3)

Since Gy, ¢, and 7 have reasonably well determined values, we can rearrange and
solve to evaluate the Planck scale, here in SI units, via the Planck area, Ap,

A,=r1"= GCA;h =2.6116...x107° meter’ = A, (4.4)

and its square root, the Planck length, Ip, where
r, =1.616...x10™ meter =1, . (4.5)

The remainder of the Planck scale values are easily determined using (4.2).
t, =5.3908...x10™ second

m, =2.1766...x10°* kilograms

Apis generally deemed to be a low end cutoff scale for definable physical
phenomena, but this shows that if it had any other value, lesser or greater, the
invariance of one or more of the three familiar constants would be challenged. In
addition, in the above discussion concerning cosmic expansion and its implications
for the nuclear scale, we have already encountered meaningful distance and time
intervals far below even the Planck scale values.

(4.6)

In (4.1), 1 is presumed to be a body force of mass times acceleration and when
evaluated using the Planck scale values, due to that extremely short time scale
indicats a truly astronomical acceleration and force of

7,=12104...x10* newton . (4.7)

Hence the need for a big bang, of whatever unknown cause, to overcome gravity at
this scale . ..

Gravitational Quantum

However, in keeping with the analysis of general relativity, 7 can, and in this writers
opinion should, be considered a surface or stress force, the product of a fundamental
cross-sectional area, Ao, and a fundamental unit of tension stress, fo, as previously
discussed and recapitulated here as

7o = Aofo (4.8)
and a differential stress force at that. Rearranging this to indicate stress as a
function of force and cross-section and taking the total derivative gives
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(4.9)

af, af, 1 7,
df, = o, ——dt, + oA dA, = A, —drt, A, dA,

The unit or fundamental mode subscrlpt designations remain, because we are
examining changes in those fundamentals over time. Separating and inverting this
function we have two differential equations, the first as a differential change in force
as a function of a change in tension stress or

dt, = Adf, (4.10)
and the second as a differential change in cross-section as a function of that change
In stress as

2
dA, = Aodfo T g =~ Boge A din g, (4.11)
7 fo fo

From our comments on isotropic stress, To, at (6.11) in the asides we know that an
isotropic stress resulting in an isotropic dilatation is related to the stress at each
face by a factor of 6. In addition, if that isotropic stress is operating along the
diagonals of the cube or along the cuboctahedral 4-axis octahedral component, it

will be equiangular to all three faces or at a factor of /3 for atotal factor of 6/3 ,

denoted 73, to give
dT,

b=

Ao dT, = A° dT (4.13)

T V3

(4.12)

making the differential stress force

Newton’s Gravitational Constant

If we now use this differential stress force in Planck’s dimensional analysis instead
of the body force, we have

2 4 r 2 6

G =T dar 0 dT =l dT, 4.14
N ; ( 0) hZ/ [ 0 h2 7/3172 0 ( )

From Aside #1, since dTo equals 1, and we know the values of the other invariants,

we can rearrange again and solve for the fundamental length scale, applicable to the
current expansion extent of the cosmos and get

I = Gyi” L ¥ =|y.G L 6 =2.1002...x107"° meter =X (4.15)

0 }/3 Cz dTO ’J/3 N dTO : Cn )
As indicated, this evaluates as the reduced Compton wavelength of the neutron. This
indicates that the neutron scale, the resonant state of a quantum PSg, is the
fundamental physical scale. Applying this result to (4.2) we get the neutron mass as
the fundamental mass, (fundamental need not mean smallest in regards to mass),
and to (4.11) and (4.12), we find that

dA,=A, (4.16)
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the Planck area, and a gravitational quantum, Go, for use in (4.14) and in Newton'’s
Law is

G,=dt,=vy;rdl, = y;IKZC’nd]z) =4.2443..x107° Newton (4.17)
Using (4.14) and the current CODATA values for A ,,% and c gives a theoretical

value for Gy of 6.6731971...x10-11 m3 / kg-s2, within the standard uncertainty of the
current CODATA value of 6.67384(80) x 10-11, in conformance with our PS3 model.
This does not indicate that it is the reduced Compton wavelength that produces
gravity, rather it is the change in central force as a result of in a change in the
expansion stress that determines both ., and G,.

Evaluation of the tension stress force at the boundary of a unit PS3 based on this
scale is

2 2
T =17,= n c2 = sz = E _7.1676..x10° Newton (4.18)
g ckhe, ¢ " R,

The ratio of tension stress force to differential force or gravitational quantum, which
is also the ratio of the tension stress to the differential stress is
o, 71, T

=0 =-0-16887..x10". (4.19)
dt, G, dT,
Inverting this gives the differential of the natural log of the expansion stress
dInT, = d% =5.9214..x107"° (4.20)
0

This is also the general scale of the ratio of the gravitational force to the strong
force, this latter interaction being what 7, represents. It will prove of interest that

the square root of (4.19) is equal to the ratio of the neutron reduced Compton
wavelength and the Planck length as

B /% = JdInT;" =129952..x10". (4.21)
P 0

With respect to gravity, the rotational oscillation of the PS3 results in a centripetally
directed tension stress force differential in response to expansion tension force that
accounts for gravity, as found in (4.17) above. This is found in the above Spin
Diagrams and the Figure 40 and 41 Charge and Spin Tables at the centripetally
directed cross products for the W,y and +V nodal points for the neutron, the W.x and
-V nodal points for the proton and electron, and the W., and +V nodal points for the
antiproton and positron.

Quantum Newtonian Law of Gravity

A quantum version of Newton’s law can thus be shown from the above as

FG _ I’ZMIIZMZ (%JTOJ _ an’ZMZ GO (422)
3

To To
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where the mass and distance properties are expressed in units of the fundamental
neutron scale. Substituting

n, = Mo _ M2 (4.23)
m, c
= d (4.24)
0 rO
gives Newton'’s law
_MM, A _ MM,
F, = 7 ((?)2 7—3dT0 == Gy (4.25)

Since the interaction depicted here is mediated directly by the spacetime fabric
(STF) and not by any messenger particles or gravitons and since it has been
operable with expansion since the initial generation of the rest mass particles, it is
not a case of “action at a distance”.

Since all the forces in this discussion of PSs are stress forces of the STF, the
individual PS3 or rest mass quanta, as well as any transmitted photon, naturally
couple with the STF in keeping with the field equation of general relativity. In
addition, such generation of quanta from a classical phase space and field is
straightforward and requires no other constructs such as Minkowski time for
interpretation.

Figure 44 - One Half of an Inversphere

We can, however, offer the following 4 dimensional interpretation of a 2-sphere, the
surface of a PS3, in the context of the above development. Each of the four axes of the
cubic diagonals can be defined as the central axis of a pair of pseudo-spheres, one on
each side of the central 2-sphere, so that they intersect each other orthogonally at
their rims as seen in Figure 44, which shows the top half of such an arrangement. A
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pseudo-sphere has constant negative curvature, and the rim intersections will be
found to coincide with the intersections of the corresponding three cubic surface
axes and the surface of a sphere of curvature related to the positive of the pseudo-

spheres; if the pseudo-sphere curvatures are -1, that of the sphere is +@ . We can

call this contraption of eight pseudo-spheres an inversphere. Sequential oscillatory
twists of the four axes as in Figure 28 and in the development of the cuboctahedral
lattice produces the rotation of PS; in PSs.

2) Quantum PS3 Oscillation States, Cosmic Expansion and Beta Decay

With expansion, the interstitial areas of the lattice respond primarily to tension, and
resulting tension strain leads to a decrease in ambient inertial density. The
mechanical impedance of the interstitial area decreases as well, and a portion of the
energy of the quantum oscillation is transmitted in the process of beta decay as a
lepton and corresponding neutrino. Therefore, we would expect the expansion rate,
i.e. the Hubble rate, to be linearly coupled with that decrease in linear density and
mechanical impedance and thereby beta decay. Photonic messenger particles, in
turn, are generated by the activity of the emitted electron.

Now for a mathematical development of this claim, we review the following:

Classical Wave Mechanics

The mechanisms of harmonic motion of an ideal inertial/elastic, continuous medium
give rise to discrete phenomena in the form of wave phasing, 0, expressed as a
wave period, semi or quarter period, or here as radian. Such discreteness can be
quantized in terms of distance as the angular wave number, x , and in terms of time
as the angular frequency, @ , of the motion. The speed of the motion, ¢, in either
standing or traveling form, is then given as the ratio of the frequency to wave
number as

S
w‘%

9 or
C = —= = — .
K ¢ ot
Such ideal wave bearing continuum will typically have a resonant frequency, @,,
and hence a corresponding resonant wave number, x,,, and we can thereby

(4.26)

%]
5|

designate natural distance and time units based upon these resonance values as

r=K, (4.27)
and
t, =w;' (4.28)
and (4.26) can be restated variously as
w, & on 1,

ot,
C=—=—"t=—=—=r0, 4.29
K_O gTO ato tO 00 ( )
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Note the correspondence of (4.26) with the first line of (4.2) and that as long as the
distance and time variables remain coupled by the phase variable, they vary
proportionally or are co-variant with respect to any change in 6.

While the relationship given by (4.26) is descriptive of the phenomena of
quantization, the dynamics of the wave is explained by the properties of the
underlying continuum substrate. According to classical wave mechanics, in this case
of an ideal stretched string, the wave speed squared is directly related to the tension
force through the string and indirectly related to its inertial or mass density as

==L (4.30)

Thus an increase in the tension force or a decrease in inertial density necessarily
results in an increase in the wave speed. Coupling (4.29) and (4.30) gives the basic
wave equation
2 06 106 106 1 , (4.31)

ook ol ™o D 0 '

0 o 2, Y% 2o

In the last term, the dynamic properties of the wave are found in the ratio of force to
density, which determines the wave speed and thereby produces the observed
quantization found in the displacement and time derivatives. An increase in the
wave speed over time will result in a decrease in the wave number, i.e. in a red shift,
if the time standard given by ¢, is held fixed. However, if time and displacement

standards are co-variant, then the nominal wave speed will remain invariant, even
though that speed in absolute terms, i.e. measured against some universal time
scale, is increasing.

Note that if the medium, in this case the string, is stretched, it indicates a decrease in
inertial density throughout its extent, along with a possible net force increase. We
can apply this same reasoning to an arbitrary one dimensional tension component
of a three dimensional space under isotropic extension or expansion.

As expressed in the second line of (4.2), if the speed of light is invariant at any scale,
then Planck’s constant simply points to a more fundamental relationship in which
the product of particle mass and length scale, as given by the particle’s reduced
Compton wavelength, is invariant. Particle mass, m ” then, is an inverse measure of

the particle wavelength, and can also be expressed as the particle angular wave
number, k. Thus

h 1

—=mr=mAi. =—~R. =K Kk

c q9q q""Cyq xc’q Cyq
where the final term is a constant of inertia, as introduced earlier and designated
tav, N, which is equal to 1 in a natural system as seen in the fourth term, and is
simply a proportionality factor relating conventional measures of mass to distance
in the second and third term. While there are cases in which the transverse wave
speed of a medium may be different from its longitudinal speed, in cases where they

=n (4.32)
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are the same, the greater the wave number, the greater will be the curvature of the
wave form. If the wave medium is the spacetime fabric, the greater the curvature,
the more particle mass, i.e. inertia, will be incorporated by the wave action. The
value in breaking down Planck’s constant into the inertial constant and the speed of
light, is that it allows us to remove the time dimension from the fundamental
invariant, giving us a dynamic component or moment that is invariant in any
reference time-frame.

Combining (4.32) with (4.26) and (4.30) gives the quantum wave equation
1 1
A, =0k, :c—znwj =37, (4.33)

where 4, is the inertial density of the quantum waveform and 7, is the wave force of

that quantum.

Applying (4.32) to (4.3) with (4.4) gives

r c c
G,=—5=—r=—A 4.34
A (34
and to (4.14) gives
r02 ( ) r04 rszo 4
G,= 5ldt )="% (4.35)
Yoom n’ 6\/—

Substituting (4.35) and (4.11) and (4.12) into (4.34) gives

4 2
AT, = C—[—ﬁdlnTo) (4.36)
£ 0 £

Here the difference in sense between the two terms indicates the centripetal
direction of the left term and the counter centripetal of the right. Rearranging so
that the space dimensions are on the left and the properties with time dimension,
apart from the stress differential, on the right gives

A2
—2dT, =c*(-dInT,) (4.37)
n
while some rearrangement
W efzdinT ) L1 (4.38)
y dT, T,

and inversion gives a three dimensional equivalent of the wave speed equation of
(4.30)

o =—=T,. (4.39)
Ty c

This is descriptive of the spacetime substrate and not of any particular quantum
wave.

Returning to (4.37), assuming that the inertial and space parameters are invariant
over time, and that the stress derivative remains at unity, so that the left hand term
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of the equation is invariant, if we assume that the log of the tension increases with
expansion, that is, over cosmic time, then going back in time indicates an increase in
the differential log of the expansion and a corresponding decrease in the square of
the wave speed, if the invariance of the left hand term is to be preserved. In other
words, expansion results in a decrease in inertial density of the spacetime substrate
and a corresponding increase in the wave speed. If the decrease in the differential is
not balanced by the increase in wave speed with expansion, then the stress
differential on the left must change accordingly, with a corresponding effect on the
invariance of the gravitational quantum.

We are assuming that the speed of a traveling wave, i.e. of electromagnetic radiation,
is the same as that of a discrete, standing oscillation, a rest mass waveform. Such
oscillation is equivalent to an electromagnetic wave circling a center of spin at a
distance of the quantum’s reduced Compton wavelength. If we think of such
wavelength as the arm of a quantum clock whose tip travels always at the speed of
light, then extending the length of the arm results in a decrease in its angular
velocity. By contrast, if we think of time as a measure of the clocks angular velocity
as is customary, then time must slow down as the arm extends if the end speed is to
remain invariant.

In general relativity, time is said to dilate, but in a different manner. Increased
inertial density, as in a gravitational sink, causes our quantum clock to contract its
arm instead of extend it, in keeping with the inertial constant, with a corresponding
decrease in angular velocity. The end of the clock arm, then, slows down as
measured from some global perspective. Rising out of that sink causes the clock arm
to lengthen and the angular velocity to increase.

If the speed of the arm tip is to remain constant with decreasing density and an
extension of the arm, either the angular velocity must decrease or the time unit
must extend toz,, , to account for an increase in circumferential travel per unit of

initial time, ¢,, . Inverting the usual expression for velocity, the time standard must
vary with the length standard if c is to remain invariant as

1 1.
-1
c Oe 0i

n)e }/E)i
(4.40)
ot o= @l‘
o f0e T 0i
Toi
Similarly in terms of angular frequency
C =10, = Ty;Wy;
cooo_ Toe (4.41)
LWy, =
10i0 o,

Beta Decay as a Function of Expansion

We are now ready to tackle our claim concerning the coupling of beta decay to the
Hubble rate. Expansion of the STF does not indicate an equal linear decrease in
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density either inside, locally outside or remotely outside the fundamental quantum
oscillation. The region remotely outside any oscillation is primarily under tension
stress and attendant strain, and with extension suffers a decrease in linear density
and related mechanical impedance, Z, where impedance, which essentially relates
units of time to units of mass of a wave bearing medium, is defined as follows, using
the customary theoretical unit values

T
Ac=22=7 (4.42)
C

The region about the periphery of the oscillation participates in the oscillation and
exhibits a combination of tension and shear stress/strain and corresponding density
fluctuations similar to what we might find in the ergosphere of an extreme Kerr
quantum black hole, which is what the neutron is. The region between the nodes of
the oscillation remains at the same density, unless a change of external impedance
allows transmission of a small portion of its energy and therefore a change in
inertial density.

Neutron/Electron Mass Ratio

In order for the energy of beta decay, which we will quantify as the mass of the
electron, to be transmitted from the neutron waveform, the density and impedance
at its boundary must decrease sufficient to permit that mass-energy to pass. The
electron mass, m,, is determined according to geometric constraints of the neutron

oscillation and is approximately 0.000543867 ... of the neutron mass, m, .

Figure 45

Figure 45 shows a concentric sphere and cube which have equal individual surface
areas. Assuming a sphere of radius ro and area As and a corresponding cube with
area Ac and edge length I, we have

A =4mrl=4m=6>=A, (4.43)
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L=+ (4.44)

Tension stress on the surface of each would be equal, though the sphere represents
isotropic stress while the cube represents a breakdown of the orthogonal
components of such stress in keeping with the above development. The points mid
way along each cubic edge are loci of closest stress/strain equivalence between
cube and sphere. They are also the points of optimal shear stress and strain in the
PSs3 rotational oscillation, as evidenced by the action/power moments. Such stress
force operates in an oscillatory manner toward a leading adjacent vertex, directed
by the two resultant torques, C and L, aligned with two of the cubic diagonals,
toward one or the other of the two vertices beyond the leading adjacent one.

Over time the length of the moments vary as dr,, in the context of an expanding STF,

generally in an increasing direction. The edge of the cube represents a limit for the
increase in the moments, which is reflected by an increase in C and L and their
orthogonal vector representations € and u of the Spin Diagrams. The result is an
increase in the cross-product along the W, - W_; axis for ¢, an advance of the
moments and a transmission of energy and power at that W_, node as beta decay,
where 87, represents the relative energy and therefore mass of the transmitted
oscillation.

+X
Sro=N ix -1=0023326708..

qo ,
M N L+3r _ 193877819..
ors
_ N
po +Z W = o
\ _ N 0
Me = = 2
BM fe To 1+ Oro )
')\ 5"02
PS2
Llu=r.=1

A surface sphere & cube = 4”
A cubic cross-section — % ﬂ'

, 2
I cubic edge = :’j’-ﬂ.

1
I cubic cross-section diagonal = 2 §7Z'

Cross-section through PS3 and
concentric cube of equal surface area.

Electron mass determination in PS3
Figure 46
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Figure 46 shows a cross-section through this structure at the X-Z plane of the
developed PS3 and aligned with PS; so that the moments +/-E and +/-M are aligned
with the four half diagonals of the cubic cross-section. This indicates the moments
rotating in alignment with the mid points of two of the four edges of the upper and

lower cubic faces. Each half diagonal length is therefore \/% to the parallel moment
length (not strength) of ro of 1.

The square of the differential 97, is reflected in the cross-product of the differential
values of €and u as
81, = /£ —1=0.023326708... (4.45)
87, =0.0005441353061 ... (4.46)

The ratio of the differential stress to the augmented total according to the resulting
strain is

2
o, —=0.0005438393841... (4.47)
1+ 67,
which when inverted is
2
L0 _ 1838.778193... (4.48)
T

The 2010 CODATA ratio of the electron to neutron mass is 0.00054386734461(32)
or inverted 1838.6836605(11). Since mass computation presumably uses Newton’s
gravitational constant somewhere in the standardization of mass and weight, and
given that the relative standard uncertainty of that constant at 1.2 x 10+ is relatively
large, it appears that (4.47) and (4.48) are within the relative standard uncertainty
of the neutron-electron mass ratio.

Derivation of the Hubble Rate, the Expansion Rate of the Cosmos

Continuing on, the reduced Compton wavelength of the electron is
R, =r,=—n= T (4.49)
me‘ me’
According to (4.33) the change in inertial density of the STF required for beta-decay
is the loss of mass/energy equal to that of the electron from the region exterior to

the neutron oscillation nodes over a distance r,, to be replaced by beta-decay from

the neutron energy or

Iy 1 1
dﬂyo =—|2=—2ﬂ(1)5 =—21'e (450)
r C C

e

where o, is the rest mass frequency of the electron given by

w,=— (4.51)
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and 7, is the wave force of the electron rest mass. The differential density is the

decrease in inertia over the distance of a wavelength required to generate a
waveform of such mass.

With separation of one of the wave speed components in (4.50), a change in the
linear inertial density over time is equal to a change in the impedance over distance
as
dA, t, 1 dZ,
dt ¢ dr dr

Since the values of the inertial constant as Planck’s constant over the speed of light
and the electron reduced Compton are well determined, we can solve for dA, and

(4.52)

get
d2, =2.3589..x10 " kg /m (4.53)

Since the change in linear inertial density is a linear change, we might expect this
expression to reflect the Hubble rate, which instead of a velocity per megaparsec of
recession of galaxies, can be viewed as a dimensionless linear strain of space and
therefore of time, and in fact (4.53) is a very close approximation. Converting
kilometers per megaparsec to a dimensionless strain over a second, assuming a
Hubble, H,, of 731 km per second per mps gives a spacetime strain of

2.3657...x107" per second. This indicates that the Hubble rate is capable of

generating the force required for beta-decay. However, we would like something
more precise and dimensionally correct.

Returning to (4.50), we can decompose the wave speed invariants

L (4.54)
re (rewe)(rOwO) ‘

then rearrange and multiply through by r, to get

n hw, o, r 0]
m,=—=—+—+——=d7,| — |H, (4.55)
re re wO rOwe wO

where the change in impedance is stated as the quotient of the change in expansion
force and the wave speed and the Hubble rate is shown as the spacetime length and

simultaneous time strain for each second, as in (4.40) and (4.41),

Hy=—te =llo @0 _ 36838020 1107"s. (4.56)

rOwe rO 96 a)e e
Transferring the frequency ratios to the mass side of the equation and substituting
from (4.41) the resonant mass of the neutron as a function of the product of the

expansion rate and the concurrent change in mechanical impedance is

' A study by Ron Eastman, Brian Schmidt and Robert Kirshner in 1994 and quoted in
Kirshner’s book, The Extravagant Universe, found an Hy of 73 km/s/mps +/- 8 km.
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m,=nK,=—=—-<=dZ,H, . (4.57)

Evaluation of (4.56) in conventional astronomical terms is 73.082 kilometers per
megaparsec for each second of current time. That is, a unit of space and co-variant
time are currently extended/dilated at this rate. The implication is that space and
time are currently expanding logarithmically, therefore at an accelerating pace and
such expansion drives the resonant frequency as indicated by the conjugate of the
frequency, wave number hence mass.

Thus, if the Hubble rate of expansion is roughly 73 kilometers per second per mpc,
this indicates that every local section of space is moving away from every other at
approximately 2.37 x10-18 meters per second per meter of separation. However, we
would expect this expansion to show up primarily in the large voids between
galactic filaments and clusters and not in these galactic environs or filaments of
baryonic matter due to the counter effects of gravity and electromagnetism. It
follows conventionally that inversion of this number would give us the approximate
time since all the matter was at the same locale and that the universe has been
expanding, or 4.22 x1017 seconds, which is roughly 13.4 billion years.

However, as this number represents an expansion via a compounded augmentation
of the scale of spacetime itself, and not simply an extension of matter within that
spacetime, the following equation for the doubling of spacetime applies, giving us
the Hubble time, 7, as

Ty, =E=2.92666..x1017s, (4.58)

0
This indicates that space is doubling at a current rate of every 9.280 billion years,
measured in terms of today’s seconds. If we assume that the wavelength of the
cosmic background radiation at approximately 5mm embodies that augmentation,
while harkening back to a period of primal beta decay as indicated by the Compton

wavelength over 27 of an electron, this represents a doubling of some 30 times, or
005

In| 2=
, | In2.060...x10°

In2 In2
a lifetime in terms of today’s measure of time of roughly 288 billion years. If we
extrapolate back on the same basis for the expansion over the scale of 7, tor,, prior

=30.94...doublings (4.59)

to beta-decay where it may or may not be applicable, we have an additional
doubling of 10.84 times or
In(1830.6842...)

In2
or a total doubling of the Hubble time of 41.78 or 393.47 billion years in current
time as

=10.84.... (4.60)

(2.927..x107)(41.78..) =1.2227..x10" 5 (4.61)
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Finally, if we envision that a current expansion factor can be derived by a
comparison of the Planck length and the neutron Compton wavelength, keeping in
mind that we can multiply both terms by the speed of light without affecting their
ratio and express the quotient as a coefficient of expansion in light seconds, given as

-16
k=0 = 21001910 m_y ho95) 1015 (4.62)
» T T 161612210 m

We have a close agreement with (4.61) at 412 billion years.

In another vein, we can multiply this figure as with (4.58) to get the extent of
doubling, in terms of current time standards over the most recent doubling period,
as 285 billion years or

C, =In2(k,,, )=9.00758..x10"Is. (4.63)

Dividing by (4.58) we get the number of doublings since the initial factor established
by beta-decay and get

C., 9.00758..x10"Is

X

T, 2.92666..x10"s

=30.77..doublings (4.64)

compared to (4.59).

With respect to the period before beta-decay or the last scattering of the standard
model cosmology, it is not clear from this extant modeling that rest mass quanta
emerged from an initial big bang. Rather it appears likely that such matter emerges
in an ongoing manner from galactic inertial centers, i.e. black holes which can be
gravitational field sources as well as sinks, and their connecting filaments in
response to the tension stress of expansion of the surrounding, relatively mass free
voids, as evidenced by the observance of episodic gamma ray bursts of unknown
origin.

The Missing Mass of Beta Decay

We are not quite through with our investigation. While the ratio of neutron-electron
mass as developed here is compelling, there is still a matter of the missing mass of
beta decay. According to the CODATA ratios, the difference between the neutron-
electron mass ratio and proton-electron mass ratio is

m m
L2 =1838.6836...—1836.1526...=2.5310... (4.65)

m m

e e

Since the relative mass of the electron in this case is 1, there is a relative mass or
equivalent energy of 1.530... that is unaccounted for. If it is assumed that mass is a
property that is somehow bound up in the confines of a discrete particle, this is a
puzzlement. However, if it is understood to be a measure of the resistance of stress
to a straight line force, i.e. a measure of redirection of oscillatory energy and
therefore of curvature of spacetime strain, the problem vanishes.
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Consider the function

W (n)=In,e! (4.66)
which is related to the Lambert W function, where n can be any real number, though
we will only be considering the integers. The significant feature of this function is
that it generates a system of natural logs, In,, and corresponding exponential bases,
en, that can be used as normalizing factors, so that

Ine =1, 1Ine, =-1. (4.67)
At n(0), this is simply the natural log and exponential base, and
W(0)=In,e; =0 (4.68)

In the following Figure 47 we have graphed the significant portion of the natural log
and exponential functions. Note the functions mirror each other along the line y = x,
as do their derivatives. We can define the exponential base, eg, on both x and y axes
by the point on each function at which the lines (blue) whose slopes represent the
derivatives intersect each other and the origin of the system. The only other
instances of such intersection would be when the functions reach negative infinity
along both axes, which of course they never do in the context of Euclidean space.
They do on the Riemannian complex sphere, however.

s e, +X
e,= 2.718281828... In en = 1.0

e,=1531584394... Ine, = 0.426302751...

e,=0.652918640... In e,= -0.426302751... ,n>0
e
dln en - (l e )%_ / "
de, n? T N\aq
i— ,n<0

System of exponent bases e,, shown for e, and e., where e,= e;'
Figure 47
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The whole system of ey, for n>0, occurs in the range 1< x <e¢,, and as n increases, the

slope values converge while their intersection moves toward the negative infinities
of both x and y. At the point x = 1, the derivatives of both functions equal 1 and their
slopes are parallel. In terms of the Riemannian sphere, the lines actually form to

great circles about the spheres equator. From that point, n decreases from negative

infinity toward 0 at the y asymptote. Thus n<0, occurs in the range 0 < x <1. The x
and y axes then are the doubles for the slopes ¢, and ¢,', corresponding to the

doubles for the rest of range of n.

For the range ¢, < x <+oo, the slopes of the two derivatives diverge as x increases,

and there are no real subscript functions of ¢, . Note that for the range n<0, however,
according to the derivative of the natural log with respect to a change in x, the slope

has imaginary sense, which generally indicates a rotation of some manner or

another.

The following Figure 48 table shows the results of this function for the first three
integers, and an assumption of results carried to infinity. The second Figure 48

table shows related results with the introduction of imaginary sense to the various

function.
fln) | n 0 1 2 3 o
e, | 2.718281828.. 1.763222834.. 1.531584394.. 1.419024454.. 1
e=exy 1| 0.367879441.. 0.567143291.. 0.652918640.. 0.704709490.. 1
en 1 1.763222834.. 2.345750756.. 2.857390779.. oo
e = ey 1 0.567143291.. 0.426302751.. 0.349969632.. 0
In, e, 1 0.567143291.. 0.426302751.. 0.349969632.. 0
Ino e_n -1| -0.567143291..| -0.426302751..| -0.349969632.. 0
In, e, 1 1 1 1 1
lnn e_n '1 '1 '1 '1 '1
Ino en” 0 0.567143291.. 0.852605502.. 1.049908893.. oo

= W(n)
Iny e_n" 0| -0.567143291..| -0.852605502..| -1.049908893.. oo

= W(n)
lnn enn 0 1 2 3 oo
lnn e_nn 0 '1 '2 '3 =00

Figure 48




n| f(n) nn, en in In, en n In ien in Ingiey
1 0.5671... i0.5671... 0.5671..+in/2(=+1 in/2) - /2 +i0.5671...
2 0.8526... i0.8526... 0.8526...+i n(=+2 in/2) - +10.8526...
3 1.0499... i1.0499... 1.0499...+i3n/2(=F3 ix/2) | -3x/2 +i1.0499...
4 1.2021... i1.2021... 1.2021..+i2n(=+4 ir/2) -2 +i1.2021...
5 1.3067... i1.3067... 1.3067...4i5n/2(=+5ix/2) | -5r/2 +i1.3067...
6 1.4324... i1.4324... 1.4324..+i3n(=+6 ir/2) -3 +i1.4324...
Figure 49

The function in (4.66) finds form in the following equation, where the negative

sense in the subscript has the same meaning it does in the superscript exponent,

that is it represents inversion.

Inje, =e,"=¢€", (4.69)

Thus for n = 2, we have the following, where it is understood that e, is a normalizing

coefficient for any variable x, in particular for an instant unit variable property x,

Inge,(e,) =Inye,(e,)” =1 (4.70)
and with the variable, x,, we have
1 dlne,x 1
In,ex, ) =e '=e, = 20 — 4.71
(Iny e, )" =7 = de,x, 1.53158... (+71)
(Ingy e_,x, )% =ie, ' =ie,=i dety _; | (4.72)

dlne_x,  153158..

In the final table, it is clear that the integers, n, are the count of the rotations of %2 &
and of the powers and hence the number of orders of i, both indications of a degree
of orthogonal structure.

We are interested here specifically in the factor e, . As a review of Figure 47
hopefully makes clear, the value in the subscript exponential bases is in determining
a coefficient of proportionality between two related differentials, one of which is a
function of the nth-root of the logarithm to the others linear function. We refer back
to the start of our discussion of SHM at (1.2) and the relation between an oscillator’s
frequency as a function of the square root of the quotient of the pendulum length
over the motivating gravitational acceleration. Again in the above development of
the neutron scale for quantum gravity at (4.21) we have an expression of the change
in the linear scale of 7, as the square root of the change in the natural log of the
expansion stress scale, f;. We can model quantum mass as a linear function of space
by the reduced angular wavelength, 7, or time by the frequency, o, . Using the
inertial constant and/or the speed of light we have
m, = f(r)=nr," (4.73)

m, = f(w)=ncw, = ho, (4.74)

Stress is modeled as a function of the square of both of these

80



fy=f(0*.r)=nwir,” (4.75)
We will use r, for our discussion, since we previously discussed beta decay as a
function of its increase. Thus a change in stress with expansion leads to a increase in
7y, where a preliminary decrease in mass of the fundamental oscillation, the

neutron, is equal to the mass of the emitted electron or positron as developed above
or

or’
m,=Am, =m,| —>— 4.76
e 0 0 (1+ 51’02 ) ( )
The change in stress/energy density of the oscillation is
A nw; T f.
dElzdﬁ) =f (AO 2)=_ ASO dAOZ—A—O(z)dAO:—A—OOdAO (4‘77)

where it is clear that a change in the log of the stress is inversely equal to a change
in the in the log of the cross-section,

dlnfozﬁz—ﬁz—dlnA0 . (4.78)
fo A,
Obviously, since both stress and cross-section are unit values,
Inf, =InA, (4.79)

Thus for a logarithmic expansion of the cosmos, in accordance with (4.78) and using
(4.72), we substitute f, for A, which is the square of r, = x and get

()} =ie, = df, . df, 1.0

i = =i0.65291..= ———— (4.80)
dinf,  dnf, i1.53158...

The imaginary sense assigned to the natural log differential is an indication of
transverse motion and other energy associated with the change in stress, resulting
in the change to that of the reduced Compton wavelength of the proton.

The Hamiltonian or total energy of the system resulting from beta decay is therefore
the energy of the neutron, less the rest mass energy of the electron due to the
change in stress, less the change in spin energy due to the natural log of the stress,
to equal the mass or rest mass energy of the proton.

E,—E,(df,)-E,(dnlf,)—E,=0 (4.81)
In terms of mass
m,—1m,—1.53158..Am;—m,=0 (4.82)

This is accurate to a factor of 2.16 x 10-7.
Evaluation of Elementary Charge

An final observation is in order, this about charge. We discussed it as a function of
the fundamental oscillation of PS3, but did not relate it to experimental data and the
SI fundamental charge, the coulomb, C. The coulomb, or ampere per second, is
equivalent in mechanical dimensions to one kilogram-meter per second, a measure
of momentum. A fundamental unit or elementary charge, ey, is established as
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e, =1.60217653(14)x10~" Coulomb (4.83)

As a measure of momentum, in connection with our development of PS3 and the
transmission of momentum with beta decay at W.,, the fundamental unit of
conjugate momentum, using angular frequency, is reasonably close to (4.83)

P, =N, =5.02130..x10 " kg-m/s (4.84)
Charge is related to each of the two rotational nodes, W.x and W.y, indicating the
need to apply semi-periodic frequency, which we can do by dividing (4.84) by z. In
addition, the charge generation is conditioned by the product of the momentum and
the mechanical impedance of the STF (not to be confused with the electro-
magnetically derived characteristic impedance of the vacuum), which is

Z, =nwyk,=0.002390877..kg /s

52(1”0]:0.319070926... (4.85)
T

2
¢ :(”ZO ] =0.101806256...
T

where we define the total factor, ¢ and its square for later use. Thus we would
anticipate an elementary charge of

e, = po& =nw,§ =1.602152647..x10  kg-m/ s (4.86)
This varies from the established value by a factor of 1.000015...which once again is

in the same order of magnitude as the relative uncertainty for the gravitational
constant.

Fine Structure Constant

Further development, using the familiar identity for the inverse of the fine structure
constant, ¢, a dimensionless number and therefore the ratio of two like-property
magnitudes, as

4re
o = he 20 2 137.0359989... (4.87)

2

%

and the permeability, o, and permittivity, &, relationship, where tp is in units of
inductance per meter or henrys per meter which reduces to units of force per
current squared or newton’s per ampere squared, and & is in units of capacitance
per meter or farads per meter which reduces to ampere squared per newton over
the speed of light in vacuo squared, so that

1
£,=— (4.88)
',
and with rearrangement in (4.87) gives the following
a4r a
e’ =-nc’ (a47r80): -n m =0 —n(nwoz)é’z (4.89)

It is noted that the value of o is set by convention in relating charge, g, (of which
elementary charge, ey, is an effective quantum) and current, i = dq/ dt, resulting in
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the exactness of the denominator of the next to last term. Since the negative sense
of the right terms above can be attributed to the current, therefore charge, squared,
it can be incorporated therein, canceling such sense in the charge squared term.
This suggests the transparent presence of a current squared argument in (4.89), for
which the fine structure constant is a coefficient, since from Ampere’s Law for one
ampere? of current, where the denominator on the right is in newton, we have

1, = 27r(2x10‘7N)%i0‘2 (4.90)

2 x 107 newton is the force generated for each meter length of two conductors of
infinite length and negligible cross-section and one meter apart in a vacuum with
one ampere of constant current flowing in each conductor. The d and L obviously

cancel and the ii component and therefore the force is positive or negative

depending on whether the currents are parallel and attractive or antiparallel and
repulsive.

Inserting this into (4.89) with some rearrangement gives the ratio of elementary
charge squared to current squared as the product of the modified fine structure
constant, o’ as shown, and the inertial constant. If the fine structure constant is
dimensionless and its denominator is a force from the above, then &’ is an inverse
force, which in terms of our PS3 development is the inertial constant times a

frequency squared and k is an unknown proportionality factor for the frequency as
eo2 o , k* k’
T gl == —an=—
i~ 10 nw, o

If the force in the last term is the base transverse wave force of the electron as in the

above development, then k is an angular measure per unit of elementary charge as,

(4.91)

0 0
k:a)e@:(—e)i=124.3840198...—6 (4.92)
i s )ne 6
S

Using this value with (4.91) gives
K(107) K (107N) 0
o= = =0.007297352...— (4.93)
no; 0.212013671...N e
With another look at(4.89), we get the following relationships between the
fundamental wave force and o’

o' =78 =nw;* ={w,e, (4.94)

Special Relativity and Muon & Tau Families

Concerning the compatibility of this model and special relativity, I have written
about this extensively elsewhere. Suffice it to say that the PS3 model is one of
constrained stress/strain in the STF, which acts as discrete units of rest mass with
derived properties. Each discrete state, remains a wave form and in response to
interaction with other states is free to translate and rotate in space according to the
ambient energies. It will therefore contract its characteristic strain radius in
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response to acceleration in keeping with the Fitzgerald-Lorentz length contraction,
resulting in an increase in spin energy/mass according to the definition of the
inertial constant

ha |

Ml

3

~

1]
=3

(4.95)

As to the two other families of leptons, the muon and tau, and their theoretical
related hadrons, based on their short lifetime and granted my limited knowledge of
the experimental background for their theoretical introduction, it is my perception
that they are simply the basic PS3 states we have discussed, altered by relativistic
dynamics and interaction. We would expect these states to behave in a generally
ordered fashion under constraints of high energy collision and those defined by
geometry and mathematics. The evolution of a catalogue of such short lived
phenomenology, while useful, does not indicate the need or wisdom of elevating
that phenomenology to ontology. I would grant the status of “fundamental rest mass
particle” only to common, stable, relatively long-lived states, including the neutron,
of course.
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Conclusions

We can only talk about nature and the physical world because we have a conscious
experience of it. That sensory experience is mediated by minds conditioned to look
for patterns to help navigate that world. The degree to which such navigation is so
facilitated is largely a measure of how well those patterns can be found and
understood as interconnected parts of the complete fabric of experience. The
process of such discovery is necessarily marked by periods of progress and
temporary setback involving mental effort without recompense, but over the long
haul it is a satisfactory venture.

It should be no surprise therefore that these minds feel the need to partition what is
essentially an experience of a whole into a physical world and a mental world and
perhaps some others in an attempt at understanding. Experience is experimental.
What works is real, and what doesn’t is, well, just in the mind; imaginary or perhaps
just more complex.

We observe, we think with the hope of understanding, we create models in our
heads of what we think is going on behind the scenes of our observation, we put the
models to the test, and we observe again. When the model is accurate, we take
notice, and when it is both accurate and precise, we call it true. The model merges
with the field of observation and we quickly forget that the model is just a model.
Without diminishing in one iota the relevance of such models, it bears remembering
that the reality of the model is in our head. But then so is the conscious experience
by way of the senses.

The problem with successful models is that they may be successful in their
predictive power without sufficient understanding of the fundamentals on which
their success is based. Axiomatic amnesia. It is all too easy to confuse logically
necessary results of the way the model is framed with the assumptions made about
the necessity of what is going on behind the curtain. Then when a dead end is
encountered, it is too often deemed to be a problem with the superstructure of the
model rather than a problem with its foundation.

No one has ever seen the microscopic world directly. The invention of that
apparatus gave us a view of patterns unimaginable before. The microbiological
world in particular teemed with living one-celled entities, quantum life so to speak,
and it was natural to assume that the division of inert physical stuff continued down
to some fundamental level as well. And so it does. It is just that each of those
bacteria and other microbial beings don’t create the biosphere. The biosphere is a
set of ambient conditions that allow such beings to thrive. In a similar manner it is
not the quantum particles of physics that create the phenomenal physical world,
rather it is the principal of change of inertial continuity in space, which necessarily
means over time, that creates the particles. If there is a Higgs field, this is what it is.
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[t is this writer’s position that the center stage quantum world can only be
understood against its classical backdrop of an expanding cosmos. I can’t see behind
the stage anymore than anyone else. What I do know is that if we are to understand
what is going on back there, we must be logical. | know that there must be some
ontological regime that operates more or less the same across the whole of the
cosmos, if we are to make sense of it, and that it is more likely that such regime is to
be physically found universally instead of replicated exactly at each microscopic
locale across its extents. That is, the mass of a neutron here and 10 billion light years
from here (after doing all the de rigueur relativistic computations) must be the same
now not because of some initial investment at the big bang, but due to an operative
condition at both locales right now. This sounds like a function of space itself.

The instant development of PS3 as a model for understanding, for accounting for
momentum and displacement and kinetic and potential energy and action and
power and then spin angular momentum and charge within the context of Simple
Harmonic Motion is a mental construct. [ don’t know for a fact if the void that space
appears to be among the multitude of stars is a true vacuum or the only thing that
really is. What I do know is that if we treat it as such, as an inertial - elastic wave
bearing continuum, which appears to be fully consistent with the structure of PSs3,
we can correctly account for or predict, without any extraneous factors:

Newton'’s gravitational constant as a quantum effect
Quantum spin invariance and magnitude

Quantum charge invariance and magnitude

The ratio of neutron/electron mass

The missing mass of beta decay and therefore

The ratios of neutron/proton and proton/electron
The nature of ordinary and anti matter
Relationship to the fine structure constant

All this as a function of an exponential Hubble rate

[ don’t know about the tauon and muon families, but there is more with respect to
the consistency of this model with special and general relativity, including a

description of the neutron as an extreme Kerr quantum black hole.

[ believe this is a step up the ladder from the existing understanding. If it furthers
the discussion, it deserves to be vetted.

You be the judge.
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Aside #1

Before we go further, it may be worthwhile to take a brief detour into the
fundamentals of calculus. While this is very basic, it is hoped it will be helpful. A
function is a mathematical structure, F(x, etc.) that establishes the relationship
between an independent variable(s) numerical value, (x, etc.) and a mathematical
result of computation, (y), using that value. Thus, y is equal to some function of x or

y=F(x) (5.1
The specifics of the function are given by some equation, such as
y=2x+3, or
. (5.2)
Yn =X

where x is generally held to vary continuously over some interval, a < x <b . In this
latter example, y, might be a line segment length if n = 1, an area if n = 2, or a volume
if n = 3. The n is not normally used in this manner for the y, of course, but we will
find it useful. Thus

F,(x)=y,=x" (5.3)
The derivative of the function is the ratio of the rate of change in the function F(x),
generally expressed as F’(x), resulting from a change in x, indicated by the letter d
and expressed as dx. Thus
Fr(x)= o=y (5.4)
dx

The question is how do we figure the derivative and what does it mean? Let’s say n
is 1, and we have the following function

F(x)=2x'

= 2"

x might be the weight of some variable commodity we want to ship, 2 might be the
shipping cost in dollars per ounce of commodity, and y is then the cost of shipping.
The shipping rate is then the derivative of the shipping cost with respect to a change
in shipping weight or

Fx)=2 s, (5:6)

X

Some folks would say at this point, “Why do you need calculus for this? The value of
y per unit of x gives us the same thing.” Indeed, provided we know x is in units of
ounces. If n had been some number larger than 1, calculus might be more
persuasive, however. The way we derive (5.6) is important. Since F(x) is a linear
function of x, the function of x plus a little bit more or F(x + dx) is just

E(x+dx)=y,+dy, =2(x+dx)l =2x" +2dx' (5.7)
The difference or differential amount of dF(x) or y is
dF,(x)=F(x+dx)-F(x)=y, +dy,—y, =2x"+2dx' - 2x'

dF, (x) = dy, = 2dx' (>8)
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and the derivative is the rate at which a differential amount of y is generated for
every differential amount of x,

N\ dx’' B

-~ F(x) yx 2 yx 2 (5.9)
Here we get into the ambiguities of language. The derivative asks, “what is the cost
of shipping per ounce of commodity equal to?” and the answer generally given by
the last term in the equation is “it equals 2 dollars.” Everyone knows what is being
asked and everyone understands the answer. The problem is that it is not good
grammar. As the good math and science student will remember being told, “The
dimensional units on each side of the equation have to be the same.”

The correct answer to the question is “ it equals 2 dollars per ounce of commodity.”
Looking at the next to the last term of (5.9) does not help. Obviously the dx terms
cancel out, but before that operation, the term reads “it equals 2 dollar*ounce per
ounce”, or for the purist, “’2 dollar*very small weight per very small weight”. What
type of unit is a “dollar*weight” anyway?

What is happening is that the nimble human mind understands the implicit context
even if it is only subconsciously aware of it and fills in the gaps. Usually. (5.9) really
becomes

d 2

Fx)="2 =20 (5.10)

dx  x,
where yo is, of course, a unit of y, in this case a dollar, and xo is a unit of x, in this case
an ounce. We are assuming in this discussion that the differential amount, dx can be
much smaller than 1, as will dy as a result, but the derivative is still expressed in
units of both as a limiting rate. If dy is contextually in fact 2yo, then dx becomes xo.

If x is some function of time, F(t), then so is y, since

F(t)zxzct
dx, cx
F'(t)=—L="2L 5.11
( ) dtl to ( )
sodx = o gy
tO
then
) dy, [ ¢t 2y
E(F(t)):d_tll(_ojz_o
cx, X, (5.12)

Ay _exo[ 2y ) [0
ar' 1, \ x, t,
In the above example, c is the number of ounces, say 480, of commodity x being
produced in a unit of time, say a day, so (5.12) becomes 480 ounces per day times 2
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dollars shipping cost per ounce or 960 dollars in shipping costs per day, i.e. the rate
of change in y per one unit change in t.

The take away here is that while we are accustomed to thinking of the derivative as
expressing the ratios of exceedingly small quantities, at the limit that ratio is
between two finite numbers, the consequent or denominator of which is always
expressed as one unit.

A second observation about calculus is that it is generally stated with respect to an
anisotropic differential. That is, one end of a linear mapping in a Cartesian system
representing an independent variable is held fixed with respect to the appropriate
axis as is its function on the second axis. This is reflected in the math as in the
following, where the subscript after the independent variable indicates the number
of differentials per variable,

F (x) == x?
Fy(x+dx), =y, +dy, = (x+1dx)" = x* + 2xdx + dx*

F,(dx), =dy, = 2xdx +dx’ (5.13)

2

Fl(x), = _z 2xdx+ dx”

dx
and finally

Fi(x), =22 2 2xtd (5.14)

dx

This is all well and good if one is only interested in an interpretation in which the
derivative is the slope of the curve given by F(x) in the above. If dx is much less than
unity it can be discarded in most cases in the example of (5.14). It can become
important in integration of some such functions, however.

F(x) might also represent the area of a physical space in which the relationship of
the perimeter, 4x, to the area, y», is of interest. We then might need to think of the
differential as isotropic or bilateral, as in the following, where the differential occurs
at both ends of the linear variable, thus

F(x+2dx), =y, +dy, =(dx+x+ dx)’ = (x+2dx)’ = x* + 4xdx +4dx*  (5.15)

and
1 2
Fi(x), = De BT e (5.16)
dx dx
For a volume function or
F3(x)2 =y, =x (5.17)
2 1 2 3
Fi(x), = % _Svd + lzxdx 8 _ 62 4 12xdx + 8 (5.18)
X X

The magnitude of the resultant of addition of two orthogonal unit vectors, vo1 and
Vo2, 1S \/EVO, and that of three orthogonal unit vectors is \/5\10 . Therefore in a
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condition in which an isotropic volume change, dys, is represented by an
orthonormal unit vector on each of six cubic faces, the ratio of the magnitude of a
vector equidistant from all six, i.e. along one of the cubic diagonals, to each of the

normal unit vectors will be 6+/3. Okay. Returning to Phase Space 3.
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Aside #2

In non-technical contexts, the terms “stress” and “force” are often used
interchangeably, though the distinction is generally understood even then. In
informal settings “force” is generally used to convey the idea of an external agent
operating on a separate system to produce some change. “Stress” is used to convey
an internal change in some system resulting generally from the operation of an
external agent, though there is the possibility of internally generated stress. As
discussed earlier, this common understanding finds technical expression in the
distinction between a body force, F5, and a surface or stress force, 7:s. Both have the
properties of mass times displacement over time-squared. Displacement indicates
the physical change occurring and time-squared indicates the acceleration with
which the change occurs. Mass represents a property of the agent or the system that,
at least in a classical, non-relativistic context, is not affected by the change or its
rapidity, the property of inertia, a property to stay the same whatever else is
happening. A surface or stress force has the additional definition as a stress
integrated over the surface or cross-sectional area of its operation.

In a discussion of the interaction of separate agents, i.e. bodies, where the transfer of
momentum and energy is conceptually concentrated to a point, we can generally do
pretty well without reference to the concept of stress. When we get into a discussion
of more diffuse arrangements of energy, such as in the behavior of fluids or the
concept of gravitational or electromagnetic fields, we often need to use the concept
of stress, that is a force operating over an area and the related concept of an
energy/inertial density, the energy, mass or analogous property such as charge
contained within a linear, planar, volume or higher dimensional boundary.

In various modeling, such as the ideal gas law and as expressed in Gauss’s
divergence theorem, the energy content, E, of a defined volume, V, is equal to the
tension stress, f;, general described as a pressure, at the surface or boundary of that
volume, the stress being the tension force, 7, per unit area, Ao. Here we will confine
that volume to a unit cube volume, Vy, so that

E 7

=—Lt=f (6.1)

VO AO
The energy might be the kinetic energy of an ideal gas or an electric charge and the
stress, the corresponding pressure or electric flux at a boundary surface.

In mechanical terms, the energy might be the elastic potential energy of a beam or
other structural material, giving a potential energy density, )4, for the left hand term
above, and the stress, in accordance with Hooke’s law, is the expression of Young's
modulus of elasticity, Y, and the strain, &, i.e. the stretching or extension that occurs
in the volume as a linear response to the stress or
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)/1:_0:7 IE[Z%YEr :; (62)

where the strain is defined as a relative change in the length of the material, here
designated by a unit displacement, and is therefore a dimensionless number,

g =24 (6.3)
9
For convenience, we will state that
Vo =Aoq, = (]3 . (6.4)
Young’s modulus
Y= L (6.5)
E

t

is a stress potential, an inherent property of the material, with the dimensions of
stress, as shown here, the linear ratio of stress to strain. This calls for some
mathematical clarification, since Yis not a function of & or f;, and does not become
undefined if & is zero. Rather f; is a function of & and Y or & is a function of ffand Y. Y
is a ratio such that if & equals 1, theoretically f; equals Y.

From (6.2) it is clear that if there is no strain, Y is equal to the elastic potential
energy density, M. The one half coefficient of Y'is a function of the work, W, done to
extend the structural member the distance Aqo, as

W = %TquO (66)

In general, an extension in an isotropic elastic solid material along one dimension, x,
results in a decrease or negative lateral extension along the other two dimensions,
A, where A can refer to either lateral dimension, y or z. The lateral extension, &, is
then
e = AA
A
and is inversely related to the longitudinal extension by a ratio known as Poisson’s
ratio, 0, which in an ideal isotropic solid will be 1/3, or
g=_Ea-1 (6.8)
e 3
The discussion will be facilitated if we use the following index convention to
designate the arbitrary principal axes, where the first of the indices indicates the
direction of a unit vector normal to a unit cross-section and the second indicates the
direction of the surface force and therefore stress vector. Thus for a tension force,
the indices are the same, and the complete set of elastic tension stress equations for
a unit cube are

(6.7)

6 +%fxx _%f;’y _%fzz +%f—x—x _% —y-y _% —-7-2
Ne=| —$f. ++f, —f. |+ “$f FHf S (6.9)
=0

_%fxx _%.f;;y +}1’.f‘zz _% —X—=X _%j;yf'\' +%f—z—z
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For a condition of isotropic stress in an isotropic material this becomes
6 +3LYfUc +3LYf‘—x—x
Ye = +37 [,y + + (6.10)
t=0 1 1
+37 +37

2z

-7z

The scalar value or magnitude of the total isotropic stress, T, is then
6
f T
g =6+ f|l=2"t=—, 6.11
26 =0 fl=2y =7 (6:11)

As all the stress vectors are directed out from the surface of the unit cube, this
results in a net increase in its volume or a volume strain called a dilatation, &, or
AV
£\ = v (6.12)
The dilatation is inversely related to a hydrostatic or mechanically analogous
pressure, pn, a negative tension, at the surface of the volume by a volume or bulk
modulus, B, itself analogous to Young’s modulus,

p,=—B¢, . (6.13)
In fact, in an ideal isotropic material, we find that
Y=3B(1-20
( ) (6.14)
~Y=B

As a result, the pressure, bulk modulus and dilatation are analogously related to the
potential energy density of a material as

2
2 _ Dy

W =-1p,&s=1B¢, 2B

(6.15)

There are two other related types of stress in an elastic material, shear stress and
the related concept of torsion. While tension stress operates normal or
perpendicular to the surfaces of the unit cube, shear stress operates parallel to its
edges. It should not be too surprising, therefore, if the first tension stress in (6.10)
above, fx, also contributed to the shear stress in the four adjacent cubic faces, in fact,
once to each edge of each adjacent face. However, since each edge is shared by two
surfaces, in an isotropic condition the net is one fourth of the total shear force in
each direction per face. If we think of the normal tension vector, fx, as equally
divided as extension vectors to each of the adjacent surface mutual boundary edges,
we have

[fl=l it ft fr £ (6.16)
Shear is not just the force across the appropriate cross sectional area, however. If
this same condition applied to all six faces of the cube, there might be a dilatation or
increase in volume, but there would be no shearing distortion, which is a relative
flattening of the cross sectional surface by an increase in one of the diagonals vis-a-

vis the other. The shear, once again a dimensionless value, is measured as the ratio
of the displacement of one cubic edge, ¢, to the length of the adjacent, orthogonal
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edges, e, , in the same plane, in this case the yz plane. Therefore the shear strain, &,
IS
Ae

€

£, =—=tano (6.17)

s

where « is obviously the arctan of &.

The total shear on a unit cube in the yz plane then is

Ae, Ae
Syz=8zy=%[ '+—z} (6.18)

€0 z eO y

The shear strain and stress, f;, have a shear modulus or modulus of rigidity, 4, given
as

f.=2ue, (6.19)
and an analogous relationship to Young’s modulus as
Y=2u(l+o) . (6.20)

The corresponding potential energy density in terms of shear along any dimension
IS

f 2
2u
If the shear stresses along all edges of a given cross-section are not equal, there will
be a rotation, ¢, here shown about the yz plane, in the direction of the net angular

increase given by
Ae. Ae‘,
¢, = %{—“ -— j (6.22)

For a unit cube, assuming no rotational shear strain, the total strain at the surface of
the cube is the following symmetric matrix, where the diagonals represent the
tension strain as in (6.10)

Y =fe, =2ue = (6.21)

XX 8’(} XZ g—xx g—xy g—xz
E=| e, €, €, |+ €&, &, &, (6.23)
E, €&, E E. &, E_

The following antisymmetric matrix represents the rotational components of the
shear as

0 ¢xy Xz 0 ¢— Xy ¢_ Xz
D= ¢yx 0 (D . + ¢7yx 0 ¢7yz (624)
¢, ¢, O 6. ¢., O

<
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Whether a material responds to a shear stress by flattening across its corresponding
cross-section or rotating about the cross-sectional axis is a function of the
configuration of the shear stress about the axis and the torsional rigidity of the
material, its resistance to torque or twisting.

In the event of a shear stress and strain uniformly distributed in one angular
direction about the cross-section, we have an instance of torsion or twisting of the
elastic medium in response to a torque. This is generally modeled on a rigid tube or
rod whose length largely exceeds its cross-section. For a solid rod, the torque, M, is
given as the product of the radius of the rod, r, and the circumferential shearing
stress, f,, and the cross sectional area of the rod, A = 27r2 or

dM = 27z:r2f¢dr (6.25)
The shearing strain is in keeping with (6.17) where Ae =r¢ is the circumferential
displacement or rotation of the cross-section about the longitudinal axisand ¢, =1

is the length of that axis and the rod exhibiting a reacting torque to the applied
torque. In terms of the SHM of a pendulum, the pendulum length and the length of
the torsion rod are analogous as are the displacement of the plumb bob and the
torsion shear. In fact, the torsion pendulum is common and is responsible for
determining Newton's gravitational constant. Thus we have

o= e,
(6.26)
where g, = "
)
Thus the torque for a solid rod is
4
T r
M=—u—o. 6.27
10 (6:27)
The elastic potential energy density per unit length of the rod is
My © rt, M’
V=f—=—U—¢"=—— 6.28
1 2 l 4 :u' lz ¢ 71;ur4 ( )

In summary, stress potential, quantified as a stress modulus, is the property of a
three dimensional elastic material or medium that distributes a change in one or
more spatial dimensions, and therefore its potential energy density, to all three
dimensions in the form of various stress forces and that distributes a change in
stress in one or more spatial dimensions, and therefore its potential energy density,
to all three dimensions in the form of various physical strains. It is the property by
which such a medium stretches, compresses, bends, shears, and rotates in response
to a change in configuration within its extent or at its boundary. The elasticity of
such a medium is a measure of the degree to which the original physical
configuration is restored with a cessation or diminution of the initial stress and
strain. The plasticity of such a medium is a measure of the degree to which the
original physical configuration fails to be restored with a cessation or diminution of
the initial stress and strain. In general an elastic medium will become plastic beyond
a certain limit at which the stress to strain ratios, as given by (6.5), cease to be
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linear, and the strain or deformation becomes permanent. In addition, physical
elastic media generally have the propensity for hysteresis in varying degrees, in
which an oscillating medium during its kinetic energy phases exhibits greater
kinetic energy as it moves away from its equilibrium condition toward either point
of maximum displacement than on the returns back towards the equilibrium
position. Thus it results in a loss of energy over time, in contrast to SHM in which
the ideal system is defined as being closed.

Stress and strain are perhaps best described mathematically using the stress, F, and
strain, E, tensors, so that the elastic potential energy density of a material is

V=1F:E (6.29)
Where in an anisotropic condition or for one half of a unit cube the double dot
product expands as

V=t| fubn+ e, + LE +2(foe + L8+ fo8,) ] (6.30)
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Aside #3 (taken from an earlier work-in-progress copy of this development)

In a manner that relates to the cuboctahedral lattice, we can examine the effect of an
isotropic strain, along with the corresponding stress, on a unit volume of space. In
light of previous comments, we can imagine the center of this cube as one center of
expansion and the other as extra dimensional, represented by the indefinite
extension of the four diagonals through the eight vertices. We will integrate the
differential components of the cube to compare the work done on each boundary
component to the change in the corresponding core, in this case a volume. We are
interested in the relative contributions of each component as an order of
differentiation over time to the initial unit volume, V, and not to the changing
magnitude of the volume itself. That is, from (5.18) in Aside #1, we have 6x’dx
differential surfaces, 12xdx’ differential edges and 8dx’ differential vertices. We
substitute the following boundary place-hold identities for Surface, Edge and
vertices (Corner), 1’S=x%* 1'"E=x', and 1°C = x° so as to maintain proper
integration. It will be helpful if we assign a “normal” boundary strain vector to each
of these components, which in each case will be in the direction in which the
boundary is increasing. Thus

Cubic Expansion

S|=|\3 E|=|{iC (7.1)
[E|=[V2s|=|{zC (7.2)

c|=[V3s|=|\5E (7.3)

In the following discussion, no assumption is made about the universal
configuration or number of dimensions of the space in which the unit cube is
embedded. We are only interested, at least initially, in the local geometry, which is
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assumed to be flat and therefore Euclidean. Thus it is background-independent. As
to a fourth spatial dimension, we will see that change in or motion of such
dimension is interchangeable with a dimension of time in a three spatial dimension
context.

In this case the integration will be simultaneous on each order, as indicated by the
pre-subscript n, in J. ,dx"so that we have

JVdV = 6x2j dx' +12xl]£2a’x2 +8x°
0

0

deV = 6szdx+12E(Idx][Idx]+ SC[Idx ][Idx][zde (7.5)

AV =6aS+12a’E +8a’C (7.6)
Solving for the following ratios, all at unity, where the designations S, E and C are
unit names, their dimensional quantities being absorbed in the numerical
coefficients of a, i.e. 6 square units times a, 12 length units times a2, etc., gives the
value of a for each equivalence. The ratios have been stated with the highest order
in the consequent or denominator so they are decreasing from infinity as dx
increases, until unity is reached as stated. We have (showing the negative for the
sake of symmetry)

Jdx’ (7.4)

O )

S o %l = 34151=039564..,-1.89564... (1.7)
E+C 12a"+8a 2a+%a
S 6a Y 1
— = === a:—ZO.S 78
E 124* a ? 7
2
E_13° _ % 1. a=2=0.66666.. (7.9)
C 8a a
3
564 _ 04y 4=48250.86602.. (7.10)
C 8a a
2 +i£ iiz
E o R& . =34it =P 2086602 (7.11)
S+C 6a+8a
2
SHE _0arlad . 511 5 =1.89564..,-0.39564... (7.12)

C 84’

If we think of the cube as embedded in an isotropic elastic continuum, which is of
some inertial density and under tension, dx represents the work done in displacing
or distorting the medium, and by virtue of Gauss’ theorem, the integration of that
work represents the energy of the distortion. By way of reference, in an ideal elastic
medium, the stress operating on the locale is a function of the strain and the elastic
modulus as
_YE-30P1
I+o

F (7.13)
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where F is the stress tensor, E is the strain tensor, Y is Young’s modulus of elasticity,
ois Poisson’s ratio or the negative ratio of lateral to axial or shear to tension strain,
P is the mean pressure in the medium, and 1 is the idemfactor or unit tensor.
Assuming a value of o of -1/3 for an ideal isotropic 3 dimensional medium we have

3 _
F==(YE+P1). 7.14
> (v P1) (7.14)
The vector fundamental tension stress component is
f=Ye (7.15)
and is related to the energy distribution by Gauss’ theorem for the radial strain
E=[V-edv=(e -ds (7.16)
and Stokes’ theorem for the angular or tangential strain
E,=| Vxe dS= e, dr, (7.17)

These boundary order ratios, then, are inflection points indicating the energy
contributions and potential energy gradient changes over time among the boundary
components. In an ideal static, kinematic case the change in the ratios with an
increase in dx would have no functional effect on the components, if dx has the same
magnitude for each of them as it increases. This would amount to a simple change
of scale. The real solutions above would appear to reflect this static condition.
However, in a dynamic condition, we might imagine that as each ratio decreases
below unity and past the inflection point, the magnitude of the consequent exceeds
and affects the antecedent or numerator, whose magnitude then becomes a partial
function of the consequent. This would appear to be the case for the complex
solutions in particular, which correspond with an angular gradient potential of the
boundary vectors from that of the antecedent to the direction of that of the
consequent.

These evaluations were done with Maple. It is significant that if we convert (7.11) to
complex polar notation as in the last term, the modulus is equal to the value for a in
(7.10). Itis important that we understand that the ratios represent the point at
which the change in volume due to the sum totals of all component orders in the
antecedent and consequent are equal. It is not the point at which one single

component of a given S, E, or C times its appropriate J.ndx" is equal to another,

since this happens for all at the point where a = 1.

In these evaluations, the S component of the strain and hence of the work
predominates until (7.7) is reached. At this point, the stress will begin to shift from
a predominance of tension to that of shear, meaning there will be a potential for the
surface and edge strains to oscillate. As the edges and vertices ring each of the
surfaces, the system remains basically stable, however. At the point of (7.8) the
edges assume dominance over the surfaces and a gradient is produced for the bulk
strain and the tension stress in the direction of the edges. Once again, the 2:1
symmetry of edges to surface maintains stability. At (7.9) the vertices contribute
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more work than the edges and the strain gradient shifts in their direction. Thus
there is a vector potential from the surfaces to the edges to the vertices. Once more
the symmetry between vertices and edges maintains stability.

Jumping to (7.12), at this point the strain contributed by the vertices dominates
both of the other components combined and the related stress is greatest at these
locations. This would result in a dissipation of the energy altogether, were it not for
the unusual and unique condition created by (7.10) and (7.11). The point at which
the strains of the vertices come to equal those of the surfaces is also the point at
which their combined strain comes to equal that of the edges, as given by the
modulus of the latter’s ratio. We can assume that the imaginary component of this
ratio indicates a rotational component of 7/ or 30°, and since the vertices are

assuming a predominance over the surfaces at this point, having already exceeded
the edge strain, and as there is an imbalance in the number of vertices to surfaces, a
necessary break in symmetry ensues.

We can imagine a rotational potential of the surface strain in the direction of the
vertices, which by virtue of the asymmetry between S and C, of 3 degrees of
rotational freedom and 4 possible rotational axes, results in an eventual rotational
strain about one pair of the axes. This is simultaneous with a shift of the Es in the
direction of S + C and a dragging of the strains at each of the two axial C poles. This
then leads to a rotation of the axial Cs in the direction of one of the three E pairs
extending from those two vertices. The equation of (7.11) gives this rotational
relationship. The nature of the ambiguous sense in the argument is indicative of the
equation of a rotation and its complex conjugate, when viewed from both senses of
its axis, i.e. by rotating it about the real axis, where + means plus and minus and not
plus or minus, if we adjust the Euler identity to

e =sinf+icosé. (7.18)
One end of the axis of strain then can be shown as indicated by the “symmetry
breaking” in (7.21).

124’ E =(6aS +84°C) (7.19)

LAY 7 A
12[@5’6] E:6[73e"6 }S+8[73e_ 6} C (7.20)
¢ DE= %[eHéS ve2C (7.21)

Thus, the strain vector E, rotated in some direction %, is equal to f of the Sand C

strains rotated #Z in the opposite direction, presumably in the same plane. In fact,
this states that C rotates % while S rotates £. We can see specifically how these

rotations occur in Spin Diagrams 1 and 2. We can also see there how a rotation back
in time of % equals one forward in time by 2Z and vice-versa, if their plane of

rotation, ¢, is itself rotating at a constant rate with respect to an orthogonal plane, 6,
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that is where the two axes intersect at the centers of rotation. However, it is shown
there that this corresponds with a rotation of 6, back £ and forward 37”, indicating a

variability in the strain velocity.

It should be understood that this cubic structure is simply an expression of the
orthogonal tendency for stress equalization and energy conservation. The condition
found at (7.10) and (7.11), then becomes a stable dynamic condition of rotational
oscillation or spin, within certain parameters of inertial density and mechanical
impedance. If the isotropic tension in this situation was sufficient to increase the
strain indefinitely, if the medium was to lose its elasticity and become plastic or
even rupture, any tendency to oscillate would be overcome by the transfer of energy
via strain to the vertices. Local energy would not be conserved, but be drawn away
by the strain.

[t is essential to extrapolate this scenario to a hypercube, H, to achieve a full
understanding. We will skip the integrals but show the results for the corollary of
(7.6) as

AH =8aV +24a*S +324°E +16a*C

(7.22)
=laV +3a’S +4a’E +2a"C

There are 25 combinations with corresponding non-ordered permutations or sub-
combinations, for the 4-cube; 7 involving all 4 parameters, 12 permutations
involving all sub-combinations of 3, and 6 one to one relationships. With the 3-cube,
there are 2 single real positive solutions at (7.8) and (7.9), one instance of a complex
solution at (7.11), one correspondence between a real and a complex solution at
(7.10) and (7.11) where the real value of a in one is equal to the complex modulus in
the other, and one instance of a correspondence of solutions with sense inversion,
(7.7) and (7.12), that is their solutions have the same magnitude, but of opposite
sense. As might be expected, the 4-cube shows significantly more of these
symmetries. It should be noted that while an attempt has been made to analyze the
ratios qualitatively so that all are represented as decreasing with respect to an
increasing dx, they have not all been checked quantitatively, and some may be
increasing as shown. In fact, (7.35) and (7.37) are found to be increasing at the
point represented by the first positive solution and decreasing at the second. For

(7.32) it is worth stating that for every value of the ratio 0.75 < (WSE) < 4o, the

modulus is %2 and the argument ranges from 0 to % .

[t is important to remember that a given component in the 3-cube is identical to the
same component in the 4-cube, but the relationships between them are different.
An edge still is bounded by 2 vertices, but there are 4 edges intersecting at each
vertex of the 4-cube. A line segment in an x-y plane is qualitatively no different than
one in the z-x or for that matter z-w plane. In fact a point in 3-space also has a
location in n-space, at least in Euclidean n-space. In the following, it is also
important to remember that a is not the value of the corresponding ratio, but rather
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the value found in both antecedent and consequent when the ratio equals 1. The

evaluations are based on the following identities in (7.23),

%

——,a=0.31290...,—0.15645...+i1.25436... = 1.26408...e

S+C

V+E

V=la,S =3a*,E =4a’,C =24"

=34;17=1
_sils‘ﬁ_ze

. a
V+E

V+S

V+C

14

E+C
V+C

,a=2.1120...,—0.05604...£i0.48331... = 0.48655...e"" 46235431~

S ,a=-2.58113...,0,0.58113...
E+C
SZE,a:—0.58113...,0,2.58113...
E —0.1+j-L = \/E +i0.615479709...
syc’ T T E TN

+i0.722734248...

,a=-1,-0.36602...,1.36602...
,a=-1.36602...,0.36602...,1
,—1.85463...,-0.59696...,0.45160...

,a=-0.45160...,0.59696...,1.85463...

(7.23)
(7.24)

(7.25)

(7.26)
(7.27)
(7.28)
(7.29)
(7.30)
(7.31)
(7.32)
(7.33)
(7.34)
(7.35)
(7.36)
(7.37)
(7.38)
(7.39)
(7.40)

(7.41)
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r ,a=0.24415...,—-1.12207...+i0.88817... = 1.43105...e">*>7**% (7.42)

S+E+C
e g 0@ ==0.24415..,1.12207... £i0.88817...=1.43 105...e 0T (7.43)
+S5+

A C = 2.63993..,,0.31996... £10.29498... = 0.43519.. 747 (7 44)
VAt 2.63993..,-0.31996...10.29498... = 0.43519...¢" > (7.45)
Z*g 1@ ==2.51702.01,0.25673...,0.77375... (7.46)

+
5 * g 10 = —0.773750150.25673...,2.51702... (7.47)

+

V+E . £

Once again using Maple, there are a total of 10 couplings involving complex
solutions, of which one is exclusively complex and one other has only a zero for the
third and real solution. Only one single real positive solution is given. There are,
however, 7 corresponding pairs of solutions involving sense inversion, 5 real and 2
complex. Note that all cases of sense inversion involve a combination of one or
more components in either the antecedent and/or consequent and the sense change
is associated with a transposition of one or two components in each pair. These do
not appear to have any special relationship to the conditions of the 3-cube, at first
glance, and we have not investigated them further.

There are several, however, that appear to have a direct relationship to some of the
ratios of the 3-cube. Two conditions of correspondence are found between a real
positive solution and the complex modulus of a complex solution with a positive real

component. (7.28)(£) and (7.41) (54) are directly related to (7.10) and (7.11)

respectively, the real solution and the modulus of the complex of the second two

being equal to the product of the first and \/5_1. The argument of (7.41) is the angle
at the center of a cube between a radial normal to an edge of the cube and one

extended along a diagonal to a vertex. (7.25) (%) and(7.32) () are related to (7.8)

(%)3 with a common value for their real solutions and the modulus of the complex

one. The cosine of the argument of (7.32) is equal to the solution of (7.27) (%)4,
which is the same ratio coupling as (7.8). This pairing (7.32) in turn has a modulus
equal to the real and imaginary components of an additional complex solution in

(7.48) (%) This latter solution has an argument of /4 or 45° which appears to be

an extremely stable condition, as found in a sine wave model as the point of
maximum power of the wave, where the product of the transverse wave force and
transverse wave speed are maximum. It is also the angle of the strain vector E
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discussed above for the 3-cube, with respect to the plane normal to the spin angular
momentum vector as shown in the spin diagrams. In the model developed here, this
condition is found to be invariant and rotates about the oscillation’s angular
momentum vector.

Finally, (7.41) (&), (7.48) (%:£), and (7.26) (%) are found to be related in a most

S+C
profound way in the mechanism of the oscillation herein described. The imaginary
component of (7.41) equals the modulus of (7.48). Note that (7.26) represents a 2&

rotation due to the interplay between the volume and vertex components of strain
and a modulus of that strain of % Using the equation for (7.26) or

aV =2a'C (7.49)

%e 3V:2($e 3 ] C (7.50)

tells us that a rotational oscillation of the 4-volume (boundary) strain V of modulus

% by 2% is equal to 4 axial rotations about the vertices of the same modulus and

argument, where the 2 in the consequent indicates simultaneous rotations of
opposite sense at each end of an axis. The oscillation of V is fourth dimensional, and
therefore beyond our direct sensory ken, however, the 4 vertices are not, and we
can envision the above consequent, the expression in 3 dimension of this four
dimensional rotation, as a sequence of 4, 27” rotations about the 4 diagonals of a 3-

cube. This sequence leaves the cube unchanged and avoids the entanglement
condition, i.e. the continuity of Euclidean 3-coordinates of the cube are not twisted
by the sequence. This condition of limits on the twistability of the continuum strain
is a necessary consequence of its inertial/elastic properties. As the rotation of V is
continuous, we would imagine that the sequence of 4 rotations is continuous, i.e. the
strain rotates from one reference diagonal to another about one of the three surface
axes of the 3-cube. We can also envision this as one diagonal axis rotating 2%,

followed by a 2 & rotation of the same sense about one of the adjacent 3-cube
surface axes. We can also treat it as a sequence of 4 orthogonal permutations.

We can show this configuration simply. If we align a hyperbolic surface of
revolution about the y axis of the curve

xy=1, forxS% (7.51)

at each of the eight vertices of a cube so that each of them is at the angle of the
argument given by (7.41) as just described, and so that the rims or circles of their
bases intersect at the centers of each of the six surfaces of the cube, the following
will be found concerning this geometry, which we will call an inversphere. We can
also, as an alternative, create a similar construct using a pseudosphere in place of
the above surface of revolution. Given a constant negative curvature of -1 for each
pseudosphere, the resulting inversphere would have a constant negative curvature.
With respect to the inversphere:
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Each surface of revolution, which we might call a hyper-axis or h-axis
and which can be represented by a complex plane, with the imaginary
dimension parallel to the circumference of the revolution and the real
along the diagonal axis, will have a curvature of negative 1 at the rim,
remaining negative while decreasing, that is, moving toward zero or
flatness, with distance along the asymptote. Here the left four of
Figure 4 are shown, their designations corresponding with the axes of
Figure 3 below.

Figure 1

The rims will have a radius of % The area of the circle formed by the

rim is therefore %, and its complex representation is %e"g

corresponding with (£:£).

The rims will intersect orthogonally with each other at the cubic
surface centers, so that there are three h-axes adjacent to a given h-
axis along the cubic edges which we will refer to as the proximal axes.
The rims from h-axes located diagonally across the cubic surface from
each other will be parallel or tangential at the same point at which
they intersect with their proximal axes. We will call the
corresponding parallel axes the distal axes. One set of mutually distal
axes can be called the positive h-axes.

Each h-axis has a spatial inversion or anti-axis which is proximal to
the distal axes of that h-axis. The set of their spatial inversions can be
called the negative h-axes.

Each rim intersection is a 2£ rotation from the others about the cubic

diagonal, associating it with (£).
The distance between cube surface centers describes an octahedron
of edge length \/g . The surface area of the octahedron is therefore 3.3

and the volume is g The radial normal to the octahedron face is %.

The cube will have an edge measure of 3. The surface area of the
cube is 18 and the volume is 3.53.



9. The concentric sphere intersecting at the rim intersections will have a
radius of g The surface area is 37 and the volume is @7{.

10. We can think of this arrangement as the expression of a 4-cube in a 3-
space, where the orthogonality condition of the 4-D space is met by
the rim intersections, the center of each component of sphere, cube,
octahedron and h-axis intersections being a common system center.

11. This configuration can be reduced to a 3-space orthogonal system
simply by collapsing the cube along the W hyper-axis, as in the figure
at left below, resulting in the co-ordinate system at right.

Z

’Z X //

Figure 2
The condition of (7.8) (%)3, (7.25) (%) and (7.32) (755 ) is represented by (7.48) (%:£)
at each h-axis. Thus the orthogonal projections of the argument of (7.48), described
as extending from the system center to each cubic edge midpoint, are equal to the

modulus of (7.41) (ﬁ)ﬂ and the argument of (7.26) (%) is the rotation of that axis

between proximal intersections and cubic surface centers.

In terms of g = de we are only interested in positive or increasing real values,

although in the context of complex values, some negative real components as in
(7.26) are of interest. A deeper analysis would no doubt find significance in all of
the couplings, but we are only interested in the general manner in which the 4-cube
and the 3-cube couplings might interact. In this regards it is important to remember
that in the case of the 4-cube, the volume is a boundary that is increasing while in
the case of the 3-cube, it is the base space, held constant, upon which the boundary
changes are taking place.

From the perspective of a rotational oscillation, as found in a torsion pendulum or a
jump rope oscillation, of interest are those couplings of two boundary parameters, V
+ E and S+ C, which have an intervening parameter, S and E respectively. More
interestingly, in both these cases, V + E for the 4-cube and S + C for both 4-cube and
3-cube, the two-parameter components also have a ratio between themselves
whose solution is (* ) real and equal to the modulus of the companion ratio. (7.48)
gives the special case of V + E with S + C. Unlike the other three rotational oscillator

107



couplings, it has a positive real solution in addition to its complex solution. It also
has the two parameter component ratios in common with the other two oscillators
of the 4-cube. The remaining couplings with complex solutions all have intervals
between their real and complex moduli solutions, for most exceeding 1, which

mitigates against oscillation, with one exception. (7.26) (%) has a real solution that
equals its modulus, thereby indicating rotational oscillation. In addition, the cosine
of its argument is equal to the modulus and real solution for ( ) and ( ) at 5 and

its sine, to the 3-cube modulus and real solution for ( ) and ( ) at 3 and to the

B3 J—
4-cube modulus and real for (S C) and ( ) at } = . Thus the rotational

parameters of the other rotational oscillation or spin couplings, can be found in the
simple ratio of (%).

Within the context of the 4-cube, the first value that arises is (7.42) ( ) followed

closely by (7.30) (ﬁ) This simply shows that the vertex component adds very

S+E+C

little at this juncture, although it does have a rotational element, but the negative
real component indicates a significant rotation which would seem out of synch with

the small real strain. A similar comment could be made about (7.33) (ﬁ) which is

next in the real order, though the potential rotation is much less. This is followed by
(7.24) (%) which has no rotational component. It is significant in that it is the value

of Poisson’s ratio in an ideal isotropic elastic solid, relating the axial to lateral strain
and thereby, tension to shear stress.

Next is (7.35) (£4¢) with no rotational component, followed by (7.44) (X+£:€), which

has a rotational component. The real solution and therefore the strain is negative,
however, and is out of scale with the modulus of the complex solution, which would
mitigate against rotational oscillation. This modulus and the positive solution of

(7. 36)( ) are the first values to exceed any of the solutions for the 3-cube. The
next ratios (7.25) (%) and (7.32) (725 ) involve the first of the oscillatory groups. The

real solution of the first and modulus of the second are equal to each other and to
that of (7.8)( ) while the cosine of the argument of ( ) coincides with the real

solution of (7.27) (E) . Thus we might associate an actual oscillation of the 4-cube

with the potential ( ) of the 3-cube. This is followed by (7. 39)( ) which has a

real solution and is the 4-cube corollary of the first ratio of the 3-cube. Itis of no
special interest other than being, along with (7.9) (ﬁ) a precursor for the next

coupling, which is (7.48) £*£, perhaps the most important of the whole assemblage.

Together, (

E+C) and ( ) indicate a growing predominance of E and C over S and

then C over E, or shear stress over tension, followed eventually by torsion over
shear.
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The argument of (%) represents the power of the strain oscillation, first in the

oscillatory twisting of the hyper-axes at (%), then subsequently with the rotational

oscillation of the 3-cube itself. Given the above description of the inversphere, the
modulus of this solution represents the radius of and in the plane of the rim of the h-
axis at the point at which its curvature is -1. The argument is the power phase of an
oscillation which can be found as a phase constant in the eventual rotational

oscillation of the 3-cube. This is followed by (7.46) (M), which adds no new

E+C
oscillatory components, but does show the gaining dominance of the higher order
boundary components, E and C. This culminates in a new oscillatory condition at

(7.26) (%)

Note that the real value and the modulus of (%) is slightly more than the values of

Y+E) (L), (2) and slightly less than the values of (£-,%) at oscillation. We can
S+C E E)4 S+C2C/3

interpret the condition at (%) as an oscillation about each of the 8 vertices. Each

oscillation involves a twisting or torsion ultimately of 2% in each direction about

each h-axis. The proximal axes will twist counter to the instant rotation sense of a
given h-axis as will the anti-axis, all as viewed from the exterior of the system. The
distal axes will twist with the same sense as the given h-axis, thus the directional
sense of these axes corresponds with their rotational sense vis-a-vis the other axes.
The strain on the enclosed sphere at maximum twist will be of a simultaneous
lengthening along each cubic axis and flattening in the plane of said axis and the
cubic axis from which the strain occurred and at which it is at a minimum, ideally
zero, as indicated in the figure below. The two pairs of distal axes on each surface
create two countervailing torques, which in this oscillatory condition are in
equilibrium.

Z

Z

Figure 3

This initial symmetrical condition of 2% rotational oscillation of each of the four

diagonals is broken upon dx reaching the oscillatory threshold given by (%,%)3 at
g. This results in a permanent rotation of % of one pair of the E vectors as

indicated by (7.21), thence the whole system strain continues to oscillate, while the
stresses rotate and generate an angular momentum vector. (7.26) indicates the
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rotation of the stresses in time among and about the four diagonals, which represent
the four orthogonal axes of H. The oscillation of the 3-cube is supported and driven

by the 4-stress which is concentrated in one transforming axis. (7.48) (%)

represents the power moments or positions of maximum conversion of kinetic to
potential energy and vice versa.

Finally, (7.41) (%)4 represents, in addition to the diagonals, a capacitive and an

inductive torque that is co-linear with two of the diagonals and is the product of
crossing into the power moments from their positions of equilibrium strain and
rotates with them about the angular momentum vector, all described later. The

modulus and the solution to (%)4 at \/g represents the radial length from the center

of the inversphere and 3-cube to the midpoint of the cubic edge. The solution

+i0.61547...

a=,/3e in this case indicates a rotation of this vector into the diagonal or

one of the h-axis or of E into C. Solving for (%)4

4a°E =3a*’S +24°C

4 (\/%eiio.61547... )3 E=3 (\/%eiio.61547... )2 S+2 (\/%eii().61547... )4 C

after reduction and some parsing gives

2\
2(\/§e—i0.61547...)E _ [\/%eiz] S+%e+il'23095'“C. (7.53)

Here as with the companion relationship for the 3-cube, we have “broken
symmetry” with the rotational senses, and see that rotation of two edge strains into
an adjacent corner is equal to two orthogonal rotations of a surface strain and a flip
of a vertex strain from one h-axis to a proximal axis. The moduli in this case
correspond to the metrics of the inversphere, where 2 is the distance from the cubic

(7.52)

center to the cubic vertex. We will see that this represents an instance of beta
decay, where the surface and vertex rotations indicate the flip of the electrical phase
torques from one pair of vertices to one of three proximal pairs. In the case of the
inductive torque, we have an electron emission along with a flip of the magnetic
moment, and in the case of the capacitive torque, we find a positron emission,
without the magnetic moment flip.
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Equal Area Cube and Sphere

The position indicated as the midpoint on the cubic edge is of special interest. If we
analyze a concentric cube and a sphere of equal surface area, and presumably of
equal total surface stress, we will find that the radial to the midpoint as represented

by (%)4 exceeds the spherical radius (and the path of the rotational oscillation
strain) at that point by a factor of
Or = (|3 - )= £ -1=0.023326708.... (7.54)

This indicates that the rotational path of the strain constricts the diagonals and

restricts the operation given by (ﬁ)4 Thus this differential must be overcome by

the increase in stress of that operation. If we assume that the differential given by
(7.54) is one component of the cross sectional area on which an orthogonal stress is
operating, then the square of that value gives a differential stress required for the
diagonal to flip of

or* =0.0005441353061.... (7.55)
The ratio of differential stress to the augmented total is then

or*0.0005441353061

= =0.0005438393841... (7.56)
1+ 1.0005441353061
which when inverted is
2
1;5; =1838.778193 (7.57)
r

[t bears noting that the 2002 CODATA ratio of the electron to neutron mass is
0.00054386734481(38), or within 2.796...x10-8 of the value of (7.56). Thus the
ratio of the differential stress needed to produce beta decay and the stress of
fundamental oscillation correlates significantly with the ratio of the mass-energy of
the product of that decay, the electron, and that of the fundamental oscillation, the
neutron.

With reference to beta decay, one additional observation concerns the weak mixing

angle yielded by the final measured asymmetry stated in the September, 2005 issue
of Physics Today by Bertram Schwarzschild in “Tiny Mirror Asymmetry in Electron
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Scattering Confirms the Inconstancy of the Weak Coupling Constant” as
sin’ 6, =0.2397£0.0013. If we consider the surface area of a sphere in steradians as

41, the portion spanned by each cubic edge in conjuction with the above
development is one twelfth that or an area of /3. A linear component of that

measure would therefore be \/%and would correspond generally and perhaps in

some statistical manner with the distance from a cubic surface vector to a vertex

vector as in the interplay between S and C at (&’%)3 R The arc distance between

the mid-point of that arc and each of the three parameters E, S, and C is then % \/%

We then have the following, which is stated phenomenologically and without causal
analysis

sin’ (g\/% ) =0.239735827. (7.58)
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